Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80
Hydrogen embrittlement
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001766
EISBN: 978-1-62708-241-9
Abstract
During the installation of power transmission lines across a major interstate highway, a temporary anchor stabilizing one of the poles failed, resulting in the loss of the pole and the associated power lines. It also contributed to a single vehicle incident on the adjacent roadway. Post-failure analysis revealed that the fracture was precipitated by a preexisting weld-related crack. Closed form and numerical stress analyses were also conducted, with the results indicating that the anchor was installed properly within the parameters intended by the manufacturer.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047192
EISBN: 978-1-62708-235-8
Abstract
Fracture of a cadmium-plated accumulator ring forged from 4140 steel was discovered during inspection and disassembly of a hydraulic-accumulator system stored at a depot. The ring had broken into five small and two large segments. The small segments of the broken ring displayed very flat fracture surfaces with no apparent yielding, but the two large segments did show evidence of bending (yielding) near the fractures. In addition, some segments contained fine radial cracks. Analysis (visual inspection, optical microscopy on polished-and-etched specimens, hardness testing, and chemical analysis) supported the conclusion that the failure was caused due to brittle fatigue, as evidenced by the intergranular nature of the fracture path. Also, hydrogen penetration occurred during the plating operation and was not relieved subsequently as required.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001253
EISBN: 978-1-62708-235-8
Abstract
Octagonal cast ingots weighing 6.5 tons and made of unalloyed heat treated steel CK 45 according to DIN 17200, and crankshafts forged from these ingots showed internal separations during ultrasonic testing. To determine the cause of defect, an ingot slice and a crank arm were examined metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force in the formation of primary grain boundary cracks in cast ingots.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001178
EISBN: 978-1-62708-235-8
Abstract
Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001613
EISBN: 978-1-62708-235-8
Abstract
The electroplated tappet adjusting screws used in diesel engines failed during initial bend testing. The analysis of the failure showed that the fracture was nucleated from the subsurface of the screw. The fracture surface was intergranular at the ID and OD region and microvoid coalescence in the center. The improper baking after electroplating of the screw led to H2-induced blistering/cracking. The high strength of the threaded region of the adjusting screw increased the failure propensity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001447
EISBN: 978-1-62708-235-8
Abstract
Hydrogen embrittlement is the brittleness affecting copper and copper alloys containing oxygen which develops during heat treatment at temperatures of about 400 deg C (752 deg F) and above in an atmosphere containing hydrogen. The phenomenon of hydrogen embrittlement of copper and its alloys is illustrated by examples from practice and reference is made to data from recent publications on the subject. Embrittlement due to this cause can only be identified by microscopic examination because other modes of failure in copper; e.g., from heat cracking, mechanical overload, the formation of low melting point eutectics or corrosion; show a similar appearance when investigated on a macroscopic scale.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0007736
EISBN: 978-1-62708-219-8
Abstract
Single 6.4 mm (0.25 in.) post-tensioning wires failed in a parking garage in the southern portion of the United States. Several failed wires were removed and the lengths were examined for signs of corrosion using SEM metallography. The scans showed localized shallow pitting, and chloride was detected in some of the pits. The test also revealed an initial crack that was probably caused by hydrogen embrittlement. Since no chloride was detected on the fracture surface, and none was detected in the overlying concrete, the corrosion appears to have begun prior to the wires' placement in the concrete.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001219
EISBN: 978-1-62708-219-8
Abstract
During construction of a river bridge with 80 twisted cables, one or more fractures were found in each of 21 wires of 18 cables before assembly. All were located at the outside wrapping whose Z-profile wires were galvanically zinc-coated. It was suspected that hydrogen played a role during crack formation, and that it penetrated during pickling or galvanizing. This supposition was confirmed also by the fact that the wire fractures were not observed during cable winding, but only subsequently to it, and therefore seemed to have appeared only after a certain delay.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047537
EISBN: 978-1-62708-228-0
Abstract
During the construction of a large-diam pipeline, several girth welds had to be cut out as a result of radiographic interpretation. The pipeline was constructed of 910 mm (36 in.) diam x 13 mm (0.5 in.) wall thickness grade X448 (x65) line pipe. The girth welds were fabricated using standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can be made using cellulosic electrodes. For high-risk girth welds, an increase in preheat and/or a reduction in the local stress by controlling lift height or depositing the hot pass locally before lifting may be required.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001166
EISBN: 978-1-62708-228-0
Abstract
After four months at a temperature of 400 to 5000 C, pipes at a gas generating plant were so heavily eroded they had to be replaced. Three sections of pipe, from different locations, were analyzed to determine whether mechanical wear or corrosion caused the damage. Samples of corrosion product from each pipe section were analyzed for carbon, sulfur, and iron and were found to consist mainly of iron sulfide mixed with soot and rust. The damage resulted from a high content of hydrogen sulfide in the gas (6% CO2, 20% CO, 8 to 12% H2, 0.5 to 1.5% CH4, remainder N2). To process the coal in question, the pipes material should be a heat-resistant steel that contains more chromium and has greater resistance to hydrogen sulfide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048830
EISBN: 978-1-62708-228-0
Abstract
A vessel made of ASTM A204, grade C, molybdenum alloy steel and used as a hydrogen reformer was found to have cracked in the weld between the shell and the lower head. Six samples from different sections were investigated. The crack was found to be initiated at the edge of the weld in the coarsegrain portion of the HAZ. The microstructure was found to be severely embrittled and severely gassed in an area around the crack. The microstructure of the metal in the head was revealed to be banded and contained spheroidal carbides. The lower head was established by hardness values and microscopic examination to have been overheated for a sufficiently long time to reduce the tensile strength below the minimum required for the steel. It was interpreted that the wide difference in tensile strength between head and weld metal (including HAZ) formed a metallurgical notch that enhanced the diffusion of hydrogen into the metal in the cracked region. The resultant embrittlement and associated fissuring was established to have caused the failure. The hydrogen was diffused out by wrapping the vessel in asbestos and heating followed by cooling as prescribed by ASME code.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001235
EISBN: 978-1-62708-228-0
Abstract
A welded natural gas line of 400 mm OD and 9 mm wall thickness made of unalloyed steel with 0.22C had to be removed from service after four months because of a pipe burst. Metallographic examination showed the pipe section located next to the gas entrance was permeated by cracks or blisters almost over its entire perimeter in agreement with the ultrasonic test results. Only the weld seam and a strip on each side of it were crack-free. Based on this investigation, the pipeline was taken out of service and reconstructed. To avoid such failures in the future, two preventative measures may be considered. One is to desulfurize the gas. Based on tests, however, the desulfurization would have to be carried very far to be successful. The second possibility is to dry the gas to such an extent as to prevent condensate, and this corrosion, from forming no matter how low winter temperatures may drop. This measure was ultimately recommended, deemed more effective and cheaper.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
Abstract
During natural gas drilling in the EMS region in 1956, considerable numbers of longitudinal cracks and transverse fractures occurred in the connecting pieces of the bore rods. The connectors were screwed onto the rods by means of a fine thread and tightly joined with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas was the cause of damage. Hydrogen liberated by reaction with the iron caused the formation of iron sulfide after penetration of the steel, which had an explosive effect during molecular separation under high pressure. This in turn caused the crack formation in conjunction with the external and residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048147
EISBN: 978-1-62708-234-1
Abstract
The power-type counterbalance spring, formed from hardened-and-tempered carbon steel strip and subsequently subjected to phosphating treatment, fractured at the two locations during fatigue testing. A rust colored dark band at the inside edge of the fracture surface was disclosed during investigation. Etch pits were revealed by the cleaned surface which were never observed on properly phosphated coating. It was interpreted that the spring had been subjected to an abnormal acid attack in pickling or phosphating which had resulted in considerable absorption of hydrogen by the metal and hence embrittlement. The part was concluded to have cracked during phosphating or excessive acid pickling before phosphating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048757
EISBN: 978-1-62708-234-1
Abstract
Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide and increased grain size. Hydrogen and oxygen absorption was revealed by the presence of hydrides and the shallow surface embrittlement and thus susceptibility to cracking at ambient temperatures was observed. It was concluded that the titanium tubes were embrittled due to overheating the tubes and the severe surface embrittlement resulted from oxygen absorption which made the surface layers susceptible to cracking under start up and shutdown. Replacement tubes made of a heat-resistant alloy (e.g., Hastelloy C-276) were recommended.
1