Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 93
Intergranular fracture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001799
EISBN: 978-1-62708-241-9
Abstract
A high-speed pinion gear shaft, part of a system that compresses natural gas, was analyzed to determine why it failed. An abnormal wear pattern was observed on the shaft surface beneath the inner race of the support bearings. Material from the shaft had transferred to the bearing races, creating an imbalance (enough to cause noise and fumes) that operators noted two days before the failure. Macrofeatures of the fracture surface resembled those of fatigue, but electron microscopy revealed brittle, mostly intergranular fracture. Classic fatigue features such as striations were not found. To resolve the discrepancy, investigators created and tested uniaxial fatigue samples, and the microfeatures were nearly identical to those found on the failed shaft. The root cause of failure was determined to be fatigue, and it was concluded that cracks on the pinion shaft beneath the bearings led to the transfer of material.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
Abstract
A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack extending radially from the bore to the surface of one of the tooth flanks. The crack runs the entire width of the bore, passing through an oil hole in the hub, across the spoke plate and out to the tip of one of the teeth. Design requirements call for the gear teeth to be carburized, while the remaining surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
Abstract
Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld had received a postweld heat treatment (PWHT). Metallographic examination revealed that the corroded areas contained undertempered martensite. Fully tempered weld areas with a hardness of 93 HRB were not attacked. No evidence of corrosion fatigue was found. Uneven temperature control during PWHT was the most likely cause of failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048791
EISBN: 978-1-62708-234-1
Abstract
Linear indications on the outer surface of a cross in a piping system were revealed by dye-penetrant examination. The cross was specified to be SA403 type WP 304 stainless steel. The cross had been subjected to induction-heating stress improvement. The linear indications on the cross were located in wide bands running circumferentially below the cross-to-cap weld and above the cap-to-discharge-pipe weld. The material was found to conform to the requirements both in terms of hardness and strength. Intergranular cracks filled with oxide were observed on metallographic analysis of a sectioned and oxalic acid etched sample. The grain size was found to exceed the ASTM standard. No indications of sensitization were observed during testing with practice A of ASTM A 262. Definitive evidence of contaminants to support SCC as the failure mechanism was not disclosed during analysis. It was concluded that overheating or burning of the forging, which classically results in large grain size, intergranular fractures, and fine oxide particles dispersed throughout the grains was the possible reason for the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046991
EISBN: 978-1-62708-234-1
Abstract
The outlet-piping system of a steam-reformer unit failed by extensive cracking at four weld locations. The welded system consisted of Incoloy 800 (Fe-32Ni-21Cr-0.05C) pipe and fittings. The exterior surfaces of the system were insulated with rock wool that did not contain weatherproofing. On-site visual examination and magnetic testing indicated severe external corrosion of most of the piping. The system showed extensive cracking in weld HAZ. One specimen indicated that corrosion extended to a depth of 3.2 mm and cracks were seen at the edge of the cover bead and in the HAZ of the weld. Metallographic examination showed that cracking was intergranular and that adjacent grain boundaries had undergone deep intergranular attack. Examination at higher magnification revealed heavy carbide precipitation, primarily at grain boundaries, indicating that the alloy had been sensitized, which resulted from heating during welding. Electron probe x-ray microanalysis showed the outside surface of the tube did not have the protective chromium oxide scale normally found on Incoloy 800. The inside surface of the tube had a thin chromium oxide protective scale. This evidence supported the conclusions that the deep oxidation greatly decreased the strength of the weld HAZ and cracking followed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048846
EISBN: 978-1-62708-234-1
Abstract
A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough, oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward and in the circumferential direction in response to a bending moment load. It was concluded that the primary cause of failure was the occurrence of bending stresses that exceeded the stress levels predicted by design calculations and that were higher than the maximum allowable primary membrane stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
Abstract
A 1-in. diam pump spindle fractured within the length covered by the boss of the impeller which was attached to the spindle by means of an axial screw. The pump had been in use in a chemical plant handling mixtures of organic liquids and dilute sulfuric acid having a pH value of 2 to 4 at temperatures of 80 to 90 deg C (176 to 194 deg F). The fracture was unusual in that it was of a fibrous nature, the fibers-which were orientated radially-were readily detachable. The surface of the spindle adjacent to the fracture had an etched appearance and the mode of cracking in this region suggested that failure resulted from an intergranular attack. Subsequent microscope examination confirmed the generally intergranular mode of failure. A macro-etched section near the fracture revealed a radial arrangement of columnar crystals, indicating that the spindle was a cast and not a wrought product as had been presumed. Spectroscope examination showed this particular composition (Fe-23Cr-18Ni-1.8Mo-1.2Si) did not conform to a standard specification and is apparently a proprietary alloy. It was evident that the particular mode of failure was related to the inherent structure of the material.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047579
EISBN: 978-1-62708-234-1
Abstract
Several fractures occurred in flange studs used for remote handling of radioactive equipment. The studs, of quenched-and-tempered type 414 stainless steel, fractured in the HAZs produced in the studs during the circumferential welding that joined the studs to the flanges. The weld deposits were of type 347 stainless steel, and the flanges were type 304 stainless steel. Metallographic examination of the failed studs revealed that the HAZs contained regions of martensite and that intergranular cracks, which initiated at the stud surfaces during welding, propagated to complete separation under subsequent loading. The studs fractured under service loads as a result of intergranular crack propagation in the HAZ. Rapid heating and cooling during attachment welding produced a martensitic structure in the HAZ of the stud, which cracked circumferentially from the combination of thermal-gradient and phase-change stresses. Joining the studs to the flanges by welding should be discontinued. They should be attached by screw threads, using a key and keyway to prevent turning in service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001405
EISBN: 978-1-62708-234-1
Abstract
During microscopic examination of a number of cases of caustic cracking, a certain feature has been recognized that appeared to be associated only with caustic cracking. This was a preferential attack on the carbide envelopes and lamellae of the pearlite grains. Evidence suggests that the intergranular path of caustic cracks in steam boilers may be due largely to the presence, probably on a submicroscopic scale, of carbides at the grain boundaries, thus rendering these regions susceptible to preferential attack. It is known that some steels are more liable to develop caustic cracks than others, although their microstructures may not show any significant differences, and it seems probable that this behavior may be related to the amount and continuity of the grain-boundary carbides.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001012
EISBN: 978-1-62708-234-1
Abstract
An interstage radiator gas coil began leaking after only 45 days of service. The original brass coil with several aluminum fins was replaced three times but each replacement lasted less than a day. After removing the fins, leaks were found at circumferential cracks. A section of a tube was removed and split, revealing a series of cracks, evenly spaced. Crack spacing coincided with fin spacing, indicating that stresses incurred during installation of the fins promoted failure. Metallographic examination showed intergranular, branched cracking, characteristic of stress corrosion failures, with the cracks starting on the inside surfaces of the tubes. There was no known corrosive agent in the system, and no other corrosion damage could be found. Qualitative tests and spectrographic analysis gave a positive indication for mercury. The spacing of the cracks, the branched intergranular cracking, the rapid failure, and presence of mercury led to the conclusion of stress-corrosion cracking. It was impossible to remove mercury from the system so carbon steel coils were substituted for the brass ones. The carbon steel coils gave failure-free service for over nine years.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001705
EISBN: 978-1-62708-234-1
Abstract
The working fluid of a hypersonic wind tunnel is freon 14 heated in molten-metal-bath heat exchangers. The coils of the heaters have failed several times from various causes. They have been replaced each time with a stainless steel deemed more appropriate, but they continue to fail. In this case study, the history of failures is traced, the causes are analyzed, and recommendations are made for future design and maintenance. Coils fabricated from AISI 316 should provide satisfactory service life if reasonable precautionary measures are observed during maintenance and testing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
Abstract
A fused-salt electrolytic-cell pot containing a molten eutectic mixture of sodium, potassium, and lithium chlorides and operating at melt temperatures from 500 to 650 deg C (930 to 1200 deg F) exhibited excessive corrosion after two months of service. The pot was a welded cylinder with 3-mm thick type 304 stainless steel walls and was about 305 mm (12 in.) in height and diam. Analysis (visual inspection and 500x micrographs etched with CuCl2) supported the conclusions that the pot failed by intergranular corrosion because an unstabilized austenitic stainless steel containing more than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance and ductility are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress relieved at 900 deg C (1650 deg F) for 2 h and rapidly cooled to minimize residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001724
EISBN: 978-1-62708-234-1
Abstract
Forged austenitic steel rings used on rotor shafts in two 100,000 kW generators burst from overstressing in a region of ventilation holes. A variety of causes contributed to the brittle fractures in the ductile austenitic alloy, including stress concentration by holes, work hardened metal in the bores, and a variable pattern of residual stress.
1