Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Soil corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
Abstract
One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression in the backfill revealed the site of failure. Analysis (visual inspection, electrical conductivity, and soil analysis) supported the conclusions that the failure had resulted from galvanic corrosion at a point where the corrosivity of the soil was substantially greater than the average, resulting in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length to provide cathodic protection.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047335
EISBN: 978-1-62708-219-8
Abstract
A section of cast iron water main pipe contained a hole approximately 6.4 x 3.8 cm (2.5 x 1.5 in.). The pipe was laid in clay type soil. Examination revealed severe pitting around the hole and at the opposite side of the outside diam. A macroscopic examination of a pipe section at the hole area showed that the porosity extended a considerable distance into the pipe wall. Metallographic examination revealed a graphite structure distribution expected in centrifugally cast iron with a hypoeutectic carbon equivalent. Chemical analyses of a nonporous sample had a composition typical of cast iron pipe. Chemical analyses of the porous region had a substantial increase in carbon, silicon, phosphorus, and sulfur. The porous appearance and the composition of the soft porous residue confirmed graphitic corrosion. The selective leaching of iron leaves a residue rich in carbon, silicon, and phosphorus. The high sulfur content is attributed to ferrous sulfide from a sulfate reducing bacteria frequently associated with clay soils. Reinforced coal tar protective coating was recommended.