Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Cavitation corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
Abstract
Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting. Uniform corrosion is evident and two deep linear defects are present on impeller blade tips. In contrast, the undamaged impeller surfaces are covered with a dark oxide film. This and many other impellers in seemingly identical service conditions survive long lives with little or no apparent damage. No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most severe form of erosion corrosion. Cavitation damage to the protective oxide film caused the zirconium to lose its normally outstanding corrosion resistance. The root cause of the impeller failure is most likely the introduction of excessive air into the pump due to low liquid level, a bad seal or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.