Skip Nav Destination
Close Modal
By
B. Aksakal, O.S. Yildirim, H. Gul
By
D. G. Chakrapani
By
Friedrich Karl Naumann, Ferdinand Spies
By
R.J. Parrington
By
Carl J. Czajkowski
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Erosion corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Book Chapter
Failure of an Inconel Clad Carbon Steel Inlet Cone of the Pandia Digester
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001563
EISBN: 978-1-62708-230-3
Abstract
An Inconel-clad SA-212 Grade B carbon steel inlet cone with an anticipated 25-year service life failed in a localized area after only seven years of service. The failure was caused by an erosion/corrosion leak at the midsection. Erosion/corrosion was confined to a localized area directly facing the steam inlet nozzle. The Inconel cladding was intact elsewhere in the inlet cone with insignificant corrosion-related degradation. In the absence of the conditions that led to erosion/corrosion, the Inconel clad carbon steel was considered adequate for the intended service. As a corrective measure, a solid Inconel liner was recommended in the areas of direct steam impingement.
Book Chapter
Screw Hole With Fretting and Fretting Corrosion of a Type 316LR Stainless Steel Plate
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
Abstract
Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited by a large portion of the contact area. Fine corrosion pits in the periphery were observed and intense mechanical material transfer that can take place during fretting was revealed. Smearing of material layers over each other during wear was observed and attack by pitting corrosion was interpreted to be possible.
Book Chapter
Heavy Pitting Corrosion on a Type 304 Stainless Steel Screw
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048419
EISBN: 978-1-62708-226-6
Abstract
Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made of type 316LR stainless steel and some mechanical fretting and very few corrosion pits were revealed. Type 304 stainless steel was deemed not to be satisfactory as an implant material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
Abstract
A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.
Book Chapter
Corrosion of a Laser Mirror
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006440
EISBN: 978-1-62708-234-1
Abstract
A failed laser mirror and another complete mirror of the same construction were analyzed. The laser mirror consisted of three layers of material brazed together to form channels through which the cooling water flows. Samples were analyzed with light optical and scanning electron microscopy. The corrosion product contained molybdenum and copper with a trace of gold. The base material was analyzed as molybdenum with negligible alloying additions. The primary mode of corrosion attack on the base material appeared to be intergranular, although uniform corrosion was evident also. It was concluded that corrosion attack sufficiently weakened the base material and the brazed joints, allowing catastrophic failure of the mirror due to the pressure of the cooling water. It was recommended that the mirrors be cleaned of all corrosion products present as a result of past service conditions and proof tested. It was recommended that the water system consisting of deionized water and formaldehyde be replaced with water having a low oxygen content and a cathodic inhibitor (oxygen scavenger).
Book Chapter
Impingement-Corrosion Failure of a Ferritic Malleable Iron Elbow
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091402
EISBN: 978-1-62708-234-1
Abstract
Leakage was detected in a malleable iron elbow (ASTM A 47, grade 35018) after only three months in service. Life expectancy for the elbow was 12 to 24 months. The piping alternately supplied steam and cooling water to a tire-curing press. The supply line and elbow were subjected to 14 heating and cooling cycles per hour for at least 16 h/day, or a minimum of 224 cycles/day. Steam and water pressure were 1035 kPa (150 psi) and 895 kPa (130 psi) respectively, and water-flow rate was estimated to be 1325 L/min (350 gal/min) based on pump capacity. Water-inlet temperature was 10 to 15 deg C (50 to 60 deg F) and outlet temperature was 50 to 60 deg C (120 to 140 deg F). The pH of the water was 6.9. Investigation (visual inspection, chemical analysis, and 67x nital etched micrographs) supported the conclusion that the elbows had been given the usual annealing and normalizing treatment for ferritizing malleable iron. This resulted in lower resistance to erosion and corrosion than pearlitic malleable iron. Recommendations included replacing the elbows with heat-treated fittings with a pearlitic malleable microstructure.
Book Chapter
Corroded Pipe Section of Oil Burner for Superheated Steam Generator
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001240
EISBN: 978-1-62708-234-1
Abstract
A heat exchanger made of a pipe in which oil was heated from the outside from approximately 90 deg C to 170 deg C, by superheated steam of about 8 to 10 atmospheres had developed a leak at the rolled joint of the pipe and pipe bottom. The pipes were supposed to be made from St 35.29 steel and annealed at the rolled joint to 100 mm length. The outer pipe surface was strongly pitted by corrosion all around the rolled joint. In the vicinity of the steam chamber the pipe wall had oxidized through from the exterior to the interior at one spot. Adjoining this spot, grooves caused by erosion were noticeable. This was a typical case of crevice corrosion. The rolled joint evidently was not entirely tight, so that saturated steam condensate could penetrate into the gap.
Book Chapter
Failure of a Fan Support Casting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047441
EISBN: 978-1-62708-234-1
Abstract
A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 deg C (150 deg F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient to support the load. Analysis showed the support casting to be a standard 8620 type composition with a hardness of 311 HRB. The design of the casting was not streamlined. There were several square corners present where great pressure differences could be generated. This was a case of erosion-corrosion with the classic spongy appearance of cavitation. Two changes were proposed: streamlining the part to avoid abrupt changes in fluid flow; and a change in alloy to a more corrosion-resistant material (304 or preferably 316) to increase the tenacity of protective films.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001604
EISBN: 978-1-62708-234-1
Abstract
Critical heat exchanger components are usually manufactured from durable steels, such as stainless steel, which exhibit good strength and corrosion resistance. Failure of a heat exchanger occurred due to specification of a plain carbon steel that did not survive service in the SO2 vapor environment. However, failure analysis showed that cavitation erosion was the responsible failure mechanism, not corrosion as might be expected.
Book Chapter
Cavitation Erosion of a Zirconium Pump Impeller in an Aqueous Hydrochloric Acid Service Environment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
Abstract
Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting. Uniform corrosion is evident and two deep linear defects are present on impeller blade tips. In contrast, the undamaged impeller surfaces are covered with a dark oxide film. This and many other impellers in seemingly identical service conditions survive long lives with little or no apparent damage. No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most severe form of erosion corrosion. Cavitation damage to the protective oxide film caused the zirconium to lose its normally outstanding corrosion resistance. The root cause of the impeller failure is most likely the introduction of excessive air into the pump due to low liquid level, a bad seal or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001234
EISBN: 978-1-62708-232-7
Abstract
In a copper hot water system, a bent pipe was soldered into a straight pipe with twice the diameter. The neighborhood of the soldered joint was covered with corrosion product predominantly blue-green in color, presumably carbonates. When these corrosion products were scratched off it was seen that the copper beneath this layer had not suffered noticeable attack. The object of the examination was the localized deep cavities located almost symmetrically to both sides of the inserted end of the narrower tube on the internal wall of the wider tube which had in one place been eaten right through. The symmetrical location on each side of the point of insertion of the narrower pipe and the localized sharp delineation of the attack indicated erosion due to the formation of turbulence. By avoiding sharp transitions and abrupt changes in cross section it is possible to design the pipe work so that localized turbulence is obviated. Degassing and cleansing of the water also would reduce the danger of erosion particularly in the case of softened water, which takes up oxygen and carbon dioxide very readily thus becoming particularly aggressive.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
Abstract
Two hot water reheat coil valves from a heating/ventilating/air-conditioning system failed in service. The values, a 353 copper alloy 19 mm (3/4 in.) valve and a 360 copper alloy 13 mm (1/2 in.) valve, had been failing at an increasing rate. The failures were confined to the stems and seats. Visual examination revealed severe localized metal loss in the form of deep grooves with smooth and wavy surfaces. Metallographic analysis of the grooved areas revealed uniform metal loss. No evidence of intergranular or selective attack indicating erosion-corrosion was observed, Recommendations included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001316
EISBN: 978-1-62708-215-0
Abstract
Three 1006 carbon steels team/water separators failed in a boiler in installation after several years of service. Annual inspection had revealed no evidence of deterioration until the last inspection, when they were removed from service. Metallurgical investigation determined that the separators had deteriorated because of erosion corrosion. Further analysis of the boiler operation revealed that operational changes made in the last year of service caused an increase in velocity of the water/steam mixture. It was recommended that the operating parameters for the boiler be reevaluated and prior levels of operation be reinstituted.
Book Chapter
Single-Phase Erosion Corrosion of a 460 mm (18 in.) Diam Feedwater Line Break
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001065
EISBN: 978-1-62708-214-3
Abstract
A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode, respectively) from the suction line were analyzed. Evidence of overall thinning of the elbow and pipe material and ductile tearing of fractures indicated that the feed water pipe failed as a result of an erosion corrosion mechanism, which thinned the wall sufficiently to cause rapid, ductile tearing of the material after its design stress had been exceeded. It was recommended that steel with a higher chromium content be used to mitigate the erosion corrosion potential in the lines and that more rigorous nondestructive (ultrasonic) examinations be performed.
1