Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18
Microstructure
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001197
EISBN: 978-1-62708-235-8
Abstract
The front wall of a cast iron crankcase cracked at the transition from the comparatively minor wall thickness to the thick bosses for the drilling of the bolt holes. Metallographic examination showed the case was aggravated by the fact that the casting had a ferritic basic structure and the graphite in part showed a granular formation, so that strength of the material was low. In a second crankcase with the same crack formation the structure in the thick-wailed part was better. But it also showed granular graphite in the ferritic matrix in the thin-walled part between the dendrites of the primary solid solution precipitated in the residual melt. A third crankcase had fractures in two places, first at the frontal end wall and second at the thinnest point between two bore holes. In all three cases casting stresses caused by unfavorable construction and rapid cooling were responsible for the crack formation. A fourth crankcase had cracked in the bore-hole of the frontal face. In this case the cause of the fracture was the low strength of a region that was caused by a bad microstructure further weakened by the bore hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090181
EISBN: 978-1-62708-229-7
Abstract
Cracking in gas turbine blades was found to initiate from a mechanism of low-cycle fatigue (LCF). LCF is induced during thermal loading cycles in gas turbines. However, metallography of two cracked blades revealed a change in microstructure at as-cast surfaces for depths up to 0.41 mm (0.016 in.). Evaluation by SEM confirmed the difference in structure was associated with a lack of formation of coarse gamma prime structure in the matrix. Microhardness and miniature tensile test results indicated lower strength consistent with the absence of the coarse gamma prime constituent. The blade vendor found that the lot of hot isostatically pressed (HIP) blade castings had been exposed to an improper atmosphere during the HIP process, resulting in the weakened structure. Because subsequent failures were found in blades that did not come from the suspect HIP lot, the scope of the problem was considered generic, and the conclusion was that the primary failure mechanism was LCF. Material imperfections were a secondary deficiency that had the effect of causing the blades from the bad HIP lot to crack first.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047632
EISBN: 978-1-62708-235-8
Abstract
An air bottle, machined from a solid block of aluminum alloy 2219-T852, displayed liquid-penetrant crack indications after assembly welding. The air bottle was machined to rough shape, a 3.8 mm (0.15 in.) wall thickness cylindrical cup with a 19 mm (3/4 in.) wall thickness integral boss on one side. After annealing, hot spinning, annealing a second time, and tack welding a port fitting, the assembly was torch preheated to 120 to 150 deg C (250 to 300 deg F). The port fitting was then welded in place. Final full heat treatment to the T62 temper was followed by machining, testing, and inspection. The crack indications were found only on one side of the boss and on the lower portion of the hot-spun dome region. The metallographic specimens revealed triangular voids and severe intergranular cracks. The cracks displayed the glossy surfaces typical of melted and resolidified material. The localized cracks in the air bottle were from grain-boundary eutectic melting caused by local torch overheating used in preparation for assembly welding of a port fitting. A change in design was scheduled to semiautomatic welding without the use of preheating for the joining of the port fitting for the dome opening.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001604
EISBN: 978-1-62708-234-1
Abstract
Critical heat exchanger components are usually manufactured from durable steels, such as stainless steel, which exhibit good strength and corrosion resistance. Failure of a heat exchanger occurred due to specification of a plain carbon steel that did not survive service in the SO2 vapor environment. However, failure analysis showed that cavitation erosion was the responsible failure mechanism, not corrosion as might be expected.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001269
EISBN: 978-1-62708-215-0
Abstract
Recurring, premature failures occurred in TiN-coated M2 gear hobs used to produce carbon steel ring gears. Fractographic and metallographic examination, microhardness testing, and chemical analysis by means of EDS revealed that the primary cause of failure was a coarse cellular carbide network, which created a brittle path for fracture to occur longitudinally. As the cellular carbide network must be dispersed and refined during hot working of the original bar of material, the hobs were not salvageable. Minor factors contributing to the hob failures were premature wear resulting from lower matrix hardness and high sulfur content of the material, which contributed to lower ductility through increased nucleation sites. It was recommended that the hob manufacturer specify a minimum amount of required reduction for the original bar of tool steel material, to provide for sufficient homogenization of the carbides in the resultant hob, and lower sulfur content.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.