Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001414
EISBN: 978-1-62708-221-1
Abstract
The fracture of a clevis which formed part of the derricking gear of a large crane showed well developed conchoidal markings. These were associated with a principal origin on the outer surface at about the mid-width of the section. A number of secondary origins were apparent along this same edge. Failure was initiated at the extrados which suggested that a discrepancy in the size of the pin may have contributed to failure. Microscopic examination of a section through the main origin did not reveal any material defects or the presence of weld repairs which could have led to the premature failure. Furthermore, there were no indications that corrosion had contributed to the fatigue cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001524
EISBN: 978-1-62708-221-1
Abstract
A 140 ft. (42.7 m) long boom on a dragline crane used in coal strip-mining operations failed. One of the principal load-bearing longitudinal beams or chords of the trussed boom had fractured adjacent to a bolt hole at a location about halfway along the length of the boom. Over the lifetime of the crane, several repairs had been made to the boom. At least a year before the failure, a reinforcing gusset plate had been bolted and welded to this chord at this location. Stereomicroscopy revealed microcracks in the weld metal. A fatigue crack 45 mm (1.8 in.) long was observed to emanate from this microcrack. Scanning electron microscopy showed an overload crack extended across the remaining cross section of the chord. It was concluded that the presence of the bolt hole used to attach the gusset plate to the chord created a stress riser adjacent to the hole. Repeated high tensile stresses on the chord during the lifting of enormous loads initiated a fatigue crack in the weld region adjacent to the bolt hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001468
EISBN: 978-1-62708-221-1
Abstract
In a shaft subjected to reversed torsional stresses, failure resulted from the gradual development of fatigue cracks from opposite sides of the shaft. These broke out from origins located adjacent to the fillets at the start of the square section. The remaining uncracked material which fractured at the time of the mishap was in the form of a narrow strip, situated slightly to one side of the center of the shaft. The material was a mild steel in the normalized or annealed condition, having a carbon content of approximately 0.3%. The cracking was characteristic of that resulting from torsional fatigue. Because it occurred on two different planes at 45 deg to the axis of the shaft it was due to reversals of torsional stress rather than fluctuations of unidirectional torque. Following this failure, the shafts of six other similar cranes were tested ultrasonically. Cracks to varying degree were found in all the shafts. Timely replacement was possible and the likelihood of serious accidents removed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001633
EISBN: 978-1-62708-221-1
Abstract
Failure analysis of a mobile harbor crane wheel hub that included SEM and EDS analyses demonstrated that the mechanism of failure was fatigue. The wheel hub was a ductile cast iron component that had been subjected to cyclic loading during a ten-year service period. The fracture surface of the fatigue failure also contained corrosion deposit, suggesting that cracking occurred over a period of time sufficient to allow corrosion of the cracked surfaces. Replacement and alignment of the failed wheel hub was recommended along with inspection of the nonfailed wheel hubs that remained on the crane.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001672
EISBN: 978-1-62708-236-5
Abstract
Failed ferrous components were analyzed from a crane that operated on an offshore platform. The crane failed during operation and fell into the sea. The brake spring on the boom hoist was found to have fractured in four places. The spring contained a line defect (seam) that was the source of each crack. The fracture of the oil quenched and tempered (HRC 50 ASTM A229) spring was by stress-corrosion cracking after the crane fell into the sea because fatigue cannot account for the fractures observed. The crane failure was caused by an overload created by the operator catching a free-falling load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046160
EISBN: 978-1-62708-224-2
Abstract
A stepped drive axle (hardened and tempered resulfurized 4150 steel forging) used in a high-speed electric overhead crane (rated at 6800 kg, or 7 tons, and handling about 220 lifts/day with each lift averaging 3625 to 5440 kg, or 4 to 6 tons) broke after 15 months of service. Visual examination of the fracture surface revealed three fracture regions. The primary fracture occurred approximately 50 mm (2 in.) from the driven end of the large-diam keywayed section on the stepped axle and approximately 38 mm (1 in.) from one end of the keyway where the crane wheel was keyed to the axle. Macroscopic, microscopic, and chemical examination revealed composition that was basically within the normal range for 4150 steel. This evidence supports the conclusion that cracking initiated at a location approximately opposite the keyway, and final fracture was due to mixed ductile and brittle fracture. Axial shift of the crane wheel during operation, because of insufficient interference fit, was the major cause of fatigue cracking. Recommendations included redesigning the axle to increase the critical diameter from 140 to 150 mm (5.5 to 6 in.) and to add a narrow shoulder to keep the drive wheel from shifting during operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
Abstract
The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler metal were found during chemical analysis. It was revealed by examination of the ends of the failed cross member that a rotational force that had been applied on the cross member caused it to fracture near the sling body. It was concluded that brittle fracture at the weld was caused by overloading which was attributed to the misalignment of the sling during loading. Aluminum alloy 5183 or 5356 filler metal was recommended to be used to avoid brittle welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048048
EISBN: 978-1-62708-224-2
Abstract
A resistance-welded chain link made from 16 mm diam 4615 steel failed while lowering a 9070 kg load of billets into a rail car after being in service for 13 months. Beach marks, typical of fatigue were found to have originated at the inside of the link which broke at the weld. Cracks in the weld zone (up to 1.2 mm deep) were revealed during metallographic examination of a section through the fracture surface. The cracks were filled with scale which indicated that they had formed during resistance welding of the link. The defect was thus attributed to the weld defects which initiated the fatigue failure by acting as stress raisers. The welding method was changed by the manufacturer and all chains were replaced with defect free chains.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048052
EISBN: 978-1-62708-224-2
Abstract
Several thousands of new 16 mm diam alloy steel sling chains used for handling billets failed by chain-link fractures. No failures were found to have occurred before delivery of the new chains. It was observed that the links had broken at the weld. It was found that all failures had occurred in links having hardness values in the range of 375 to 444 HRB. It was revealed by the supplier that the previous hardness level of 302 to 375 HRB was increased to minimize wear which made the links were made notch sensitive and resulted in fractures that initiated at the butt-weld flash on the inside surfaces of the links. A further reduction in ductility was believed to have been caused by lower temperatures during winter months. Thus, the failure was concluded to have been caused in a brittle manner caused by the notch sensitivity of the high hardness material at lower temperatures. The chains were retempered to a hardness of 302 to 375 HRB as a corrective measure and subsequently ordered chains had this hardness as a requirement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0091092
EISBN: 978-1-62708-224-2
Abstract
A 60.3 mm (2.375 in.) diam drive shaft in the drive train of an overhead crane failed. The part submitted for examination was a principal drive shaft that fractured near a 90 deg fillet where the shaft had been machined down to 34.9 mm (1.375 in.) to serve as a wheel hub. A 9.5 mm (0.375 in.) wide x 3.2 mm (0.125 in.) deep keyway was machined into the entire length of the hub, ending approximately 1.6 mm (0.062 in.) away from the 90 deg fillet. A second shaft was also found to have cracked at a change in diameter, where it was machined down to serve as the motor drive hub. Investigation (visual inspection, inspection records review, optical and scanning electron microscopy, and fractography) supported the conclusion that the fracture mode for both shafts was low-cycle rotating-bending fatigue initiating and propagating by combined torsional and reverse bending stresses. Recommendations included replacing all drive shafts with new designs that eliminated the sharp 90 deg chamfers in favor of a more liberal chamfer, which would reduce the stress concentration in these areas.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001369
EISBN: 978-1-62708-215-0
Abstract
A crane long-travel worm drive shaft was found to be chipped during unpacking after delivery. Chemical analysis showed that the steel (EN36A with a case depth of 1 mm, or 0.04 inch did not meet specifications. Magnetic particle inspection revealed a crack on the side of the shaft opposite the chip. Metallographic examination indicated that the case depth was approximately 2 mm (0.08 in.) and that a repair weld of an earlier chip had been made in the cracked area. The chipping was attributed to excessive case depth and rough handling. It was recommended that the shaft be returned to the manufacturer and a replacement requested.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001129
EISBN: 978-1-62708-214-3
Abstract
The failure of a 45 Mg (50 ton) rail crane bolster was investigated. Spectrochemical analysis indicated that the material was a 0.25C-1.24Mn-0.62Cr-0.24Mo cast steel. SEM examination revealed the presence of fatigue, as well as intergranular and ductile fractures. Microstructural analysis focused on an area where an antisway device had been welded to the structure and revealed the presence of coarse, untempered martensite that had resulted from faulty weld repair techniques. It was suggested that the use of proper welding procedures, including preheating and postheating, would have prevented the failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001095
EISBN: 978-1-62708-214-3
Abstract
A 20 ton polar crane motor fell during a 3400 kg (7500 lb) lift, narrowly missing personnel working beneath the crane. Witnesses reported that the motor fall was preceded by a falling oil mass, and it was believed that the motor was intact prior to impact. The maintenance history of the crane showed that the motor had been removed, repaired, and reinstalled 2 years prior to the failure. Observations of oil leakage were noted yearly up to the failure. The motor casing was held onto the adapter plate by eight 14-20 UNC x 25 mm (1 in.) long hex socket cap screws. Examination of the motor adapter plate, motor casing shards (aluminum), the gear side of the motor housing, and seven fractured cap screws (ASTM A574) showed that the motor casing was intact at the time of “uncontrolled descent” and that the screws had failed by high nominal stress reverse bending load fatigue, which was probably the result of insufficient torque on the bolts.