Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23
Process tanks and vessels
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048782
EISBN: 978-1-62708-235-8
Abstract
A steam accumulator, constructed with 10.3 mm thick SA515-70 steel heads and an 8 mm thick SA455A steel shell, ruptured after about three years of service. The accumulator was used in plastic molding operations. An extensive lack of weld penetration in this the head-to-shell girth weld was revealed by laboratory examination. Some misalignment of the head to the shell because of radial displacement of the shell and head centerlines was observed which was found to result in excessive clearances between the two parts and a slight difference in the thicknesses of the parts. Transgranular fracture with occasional secondary branching was revealed. It was interpreted by stress analysis that a small amount of misalignment added to lack of penetration increased the stresses to near the tensile strength of the material. The failure was judged to be a short-cycle high-stress notch-fatigue failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001528
EISBN: 978-1-62708-219-8
Abstract
A 5000-gal (20,000-L) hot-water holding tank fractured at a large automotive manufacturing plant. The tank was made from Type 304 austenitic stainless steel. The inner diameter of the tank displayed a macroscopic, web-like network of cracks that deceptively suggested intergranular stress-corrosion cracking. The problem, however, originated on the outside surface of the tank where a tensile stress (due to low applied stress and fabrication-induced residual stresses) accelerated the growth of numerous stress corrosion cracks that eventually broke through to the inner surface, causing leakage and ultimately failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048830
EISBN: 978-1-62708-228-0
Abstract
A vessel made of ASTM A204, grade C, molybdenum alloy steel and used as a hydrogen reformer was found to have cracked in the weld between the shell and the lower head. Six samples from different sections were investigated. The crack was found to be initiated at the edge of the weld in the coarsegrain portion of the HAZ. The microstructure was found to be severely embrittled and severely gassed in an area around the crack. The microstructure of the metal in the head was revealed to be banded and contained spheroidal carbides. The lower head was established by hardness values and microscopic examination to have been overheated for a sufficiently long time to reduce the tensile strength below the minimum required for the steel. It was interpreted that the wide difference in tensile strength between head and weld metal (including HAZ) formed a metallurgical notch that enhanced the diffusion of hydrogen into the metal in the cracked region. The resultant embrittlement and associated fissuring was established to have caused the failure. The hydrogen was diffused out by wrapping the vessel in asbestos and heating followed by cooling as prescribed by ASME code.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089339
EISBN: 978-1-62708-233-4
Abstract
Leakage was identified around a coupling welded into a stainless steel holding tank that stored condensate water with low impurity content. The tank and fitting were manufactured from type 304 stainless steel. The coupling joint consisted of an internal groove weld and an external fillet weld. Cracking was found to be apparent on the tank surface, adjacent to the coupling weld. Chlorine, carbon, and oxygen in addition to the base metal elements were revealed by energy-dispersive x-ray spectrometric analysis. A great number of secondary, branching cracks were evident in the weld, heat-affected zone, and base metal. The branching and transgranular cracking was found to emanate primarily from the exterior of the tank. It was concluded that the tank failed as a result of stress-corrosion cracking that initiated at the exterior surface as aqueous chlorides, especially within an acidic environment, have been shown to cause SCC in austenitic stainless steels under tensile stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
Abstract
A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture was found to terminate at the welds that joined the bend to the pipeline. A high concentration of both small and large inclusions was exhibited by the metallographic examination of the steel near the fracture. Branched cracks similar to those produced by stress corrosion of steel were observed in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale. It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001454
EISBN: 978-1-62708-220-4
Abstract
The interior of a cylindrical tank used for the road transport of concentrated sulfuric acid revealed severe blistering of the plates, mainly over the crown and more particularly on the first ring. The tank, made in 1958, was of welded construction, the material being mild steel plate. Some of the blisters were pierced by drilling a hole in the center and at the same time applying a small flame. In several cases combustion of the escaping gas caused minor explosions, a result characteristic of hydrogen. Etching showed the material to be a low-carbon steel in the partly spheroidized condition. There was no evidence of cracking of the material in the region of the blisters and bend tests demonstrated it possessed satisfactory ductility. The primary cause of the blistering was ascribed to the presence of discontinuities within the plate. This provided cavities in which the hydrogen was able to accumulate and build up pressure. Had the material been free from discontinuities of appreciable size, the blistering would not have occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048795
EISBN: 978-1-62708-220-4
Abstract
A large pressure vessel designed for use in an ammonia plant failed during hydrostatic testing. It was fabricated from ten Mn-Cr-Ni-Mo-V steel plates which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition. The fracture surfaces were metallographically examined to be typical for brittle steel fracture and associated with the circumferential weld that joined the flange forging to the first shell section. Featureless facets in the HAZ were observed and were revealed to be the fracture-initiation sites. Pronounced banding in the structure of the flange forging was revealed by examination. A greater susceptibility to cracking was interpreted from the higher hardenability found within the bands. Stress relief was concluded to have not been performed at the specified temperature level (by hardness and impact tests) which caused the formation of hard spots. The mode of crack propagation was established by microstructural examination to be transgranular cleavage. It was concluded that failure of the pressure vessel stemmed from the formation of transverse fabrication cracks in the HAZ fostered by the presence of hard spots. It was recommended that normalizing and tempering temperatures be modified and a revised forging practice explored.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001402
EISBN: 978-1-62708-220-4
Abstract
Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied at these and several other corresponding locations. Cracks visible on the external surface developed from the inside in a region close to the toe of the internal fillet weld to the deflector plate, and another deep crack associated with a weld cavity is visible slightly to the right of the main fissure. Microscopic examination revealed that precipitation of carbides at the grain boundaries had taken place in the vicinity of the cracks, but that the paths of the cracks were not wholly intergranular. Conditions present in the vicinity of the internal fillet weld must have been such as to favor both inter- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001403
EISBN: 978-1-62708-220-4
Abstract
A process vessel heating coil, consisting of several 3 ft diam turns, was supplied with steam at 400 psi and a temperature of 343 deg C (650 deg F). At bi-weekly intervals well water was introduced to effect rapid cooling of the contents. After about eight months, leakage developed from a circumferential crack on the underside of the uppermost turn. Shorter cracks were found at a similar location on the bottom turn, and further leakage occurred at pinhole perforations adjacent to the crack in the top turn and near to a butt-weld in the coil. Microscopic examination revealed that the cracks were predominantly of the intergranular variety. In addition, transgranular cracks were present. Material was an austenitic stainless steel of the type specified but the absence of columbium and titanium in significant amounts showed that it was not stabilized against intergranular carbide precipitation. The transgranular cracks indicated that failure was due partly to stress-corrosion. It was concluded that the chlorides provided the main corrodent for both the stress and intercrystalline-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001404
EISBN: 978-1-62708-220-4
Abstract
After about four years of service, cracks appeared on the internal or process-side surfaces of four evaporator pans in a sugar concentrator. The pans consisted of a Mo stabilized austenitic stainless steel inner vessel surrounded by a mild steel steam jacket. Corrosion of the external surface had taken place in the form of confluent pitting over a band adjacent to the fillet weld which attached the pan to the blocking ring. Numerous cracks were present in this corroded zone. Microscopical examination of several specimens cut from the sample revealed that the internal cracks in the pan itself originated from the external side of the plate, i.e. from the region covered by the shrouding ring. They were predominantly of the transgranular type. Because the cracks were not of the intergranular type as usually found with weld decay, they were considered to be indicative of stress-corrosion cracking. Stresses responsible for the cracking resulted from weld contraction. The pans had been hosed down periodically with water from local boreholes to remove sugar from the external surfaces, which introduced the corrosive medium.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001237
EISBN: 978-1-62708-220-4
Abstract
A welded vessel made of acid resistant 18-8 steel used in a derusting operation started to leak after a long period due to the formation of cracks. The vessel was heated from the outside and did not come into direct contact with the flame. It was surrounded by a casing of unalloyed steel. Where the cracks had not eroded away, it was clear they ran transcrystalline, indicative of stress-corrosion cracking. Because the cracks propagated from the outer surface of the vessel, they were not caused by the derusting agent but by the external atmosphere in conjunction with welding stresses. The narrow gap between vessel and mild steel casing may have aggravated the situation in that it hindered ventilation and evaporation of condensation and favored the absorption and concentration of acids and salts. Contact and crevice corrosion due to deposition of rust from the mild steel casing may have contributed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001395
EISBN: 978-1-62708-220-4
Abstract
Leakage which developed from two storage vessels handling a mixture of trimethyl formate and chloroform took place from the dished head at the edge of the circumferential weld to the shell which incorporated a backing ring. Some shallow pitting had occurred under the backing ring on the shell side behind the tack welds securing the backing strip to the shell. Intermittent pitting had also occurred along the head side of the weld at the other end the vessel. There was no pitting along the main longitudinal weld of the shells in any vessel nor around any of the branches set into the shells. The material of the original vessels was specified as BS 970 - 1966. En 58J. Sections taken through pitted areas from both head welds showed preferential attack along the grain-boundaries, some grains becoming completely detached. The location of the pitting and preferential attack was at such a distance from the weld that the heat of welding could have raised the metal temperature to 550 to 700 deg C (1292 deg F). The corrosion of the shell material which occurred at the shell side of the weld under the backing ring is also an example of crevice corrosion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001655
EISBN: 978-1-62708-220-4
Abstract
This investigation involved two AISI 304L acid storage tanks and one AISI 304L spent solvent tank from a sewage treatment facility. After installation, these tanks were hydrostatically tested using sewage effluent. No leaks were found and after a year or two, the tanks were drained and filled with nitric acid in preparation for service. Three weeks later the two acid tanks were found to be leaking from the bottom. Samples from the spent solvent tank revealed that pitting was located in a depressed area near a suction hole, beneath a black residue. It was concluded that the acid tanks failed by chloride-induced pitting initiated by microbial activity. Further, the spent solvent tank failed by a similar, but anaerobic mechanism. The use of the effluent for the hydrostatic test and the failure to remove it and clean and dry the tanks was the primary cause of failure. Localized carbide segregation in the original plate served as preferential corrosion sites. Had the tanks been hydrostatically tested in a proper manner, the pitting may not have occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
Abstract
Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter. The containers were then filled with the slightly alkaline solution, pressurized, and allowed to stand under ambient conditions. A small number, less than 1%, were returned because they began to leak in service. Inspection revealed general corrosion and pitting on the inner surfaces. However, other tanks that experienced the same service conditions developed no corrosion. Corrosion was linked to forming defects that provided sites for localized corrosion, and to lack of steam drying after cleaning, which increased susceptibility to general corrosion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
Abstract
A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity, hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese-to-sulfur ratio and be in a normalized condition, low-hydrogen electrodes and welding practices should be used, all corners should be generously radiused, the welds should be inspected and ground or dressed to minimize stress concentrations, postweld heating is advisable, and radiographic and penetrant inspection tests should be performed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
Abstract
Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached prior to wall penetration, which could have led to subsequent loss of pressure, resulting in explosion of the cylinder. It was recommended that more stress corrosion resistant alloys be used for sea diving applications. Furthermore, cylinders should have a reduced wall thickness that can be determined employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091318
EISBN: 978-1-62708-217-4
Abstract
Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet. Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF) and were then immersed in the three sodium hypochlorite solutions for several days) supported the conclusion that failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly strong hypochlorite solution for sterilization and neglecting to rinse the tanks promptly afterward. Recommendations included revising directions for sterilization and rinsing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091598
EISBN: 978-1-62708-218-1
Abstract
After 10 to 20 months of service, the carbon steel hoppers on three trucks used to transport bulk ammonium nitrate prills developed extensive cracking in the upper walls. The prills were discharged from the steel hoppers using air superchargers that generated an unloading pressure of approximately 11 kPa (7 psi). Each hopper truck held from 9,100 to 11,800 kg (10 to 13 tons) of prills when fully loaded and handled approximately 90,700 kg (100 tons) per month. The walls of the hoppers were made of 2.7 mm (0.105 in.) thick flat-rolled carbon steel sheet of structural quality, conforming to ASTM A 245 (obsolete specification replaced by A 570 and A 611). Investigation (visual inspection and 100x micrographs polished and etched with nital) supported the conclusion that failure of the hoppers was the result of intergranular SCC of the sheet-steel walls because of contact with a highly concentrated ammonium nitrate solution. Recommendations included the cost-effective solution of applying a three-coat epoxy-type coating with a total dry thickness of 0.3 mm (0.013 in.) to the interior surfaces of the hoppers.
1