Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 29
Structural steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001263
EISBN: 978-1-62708-224-2
Abstract
After several years' use, an eyebolt suffered brittle fracture in the first turn of the thread. The fracture started at the notch at the root of the thread. Neither localized material defect nor an old crack were present. The investigation showed that instead of the specified steel quality St 37-2 N, a steel with about 0.5% C had been used. The microstructure with the coarse ferrite network indicated that the forged eye bolt had been normalized either at too high a temperature or not at all. In any case the anneal at 900 deg C produced a considerably more finely grained structure. In addition, the nature of the fracture and the results of the notched bar impact tests showed that in spite of the high C-content, the eye bolt had become brittle as a result of aging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001227
EISBN: 978-1-62708-235-8
Abstract
An elbow of 70 mm OD and 10 mm wall thickness made from St 35.29, and exposed to 315 atmospheres internal pressure in an oil hydraulic shear installation, cracked lengthwise after a short operating period. Because the stress was not sufficient to explain the fracture of this elbow under this pressure, an investigation was conducted to establish whether material or processing errors had occurred. Microscopic examination showed that a ferritic-pearlitic structure in select locations was very fine-grained. Other signs of fast cooling as compared to normally formed structure of the core zone were noted. It was also possible that the pipe was resting on a cold plate during bending or that it came in touch with a cold tool. This apparently caused the strains at the transition to the cross-sectional part that had been cooled more slowly. The location of the crack at just this point gave rise to the conclusion that it was formed either by the sole or contributive effect of these stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0089716
EISBN: 978-1-62708-231-0
Abstract
A railway tank car developed a fracture in the region of the sill and shell attachment during operation at -34 deg C (-30 deg F). On either side of the sill-support member, cracking initiated at the weld between a 6.4 mm thick frontal cover plate and a 1.6 mm thick side support plate. The crack then propagated in a brittle manner upward through the side plate, through the welds attaching the side plate to a 25 mm (1 in.) thick shell plate (ASTM A212, grade B steel), and continued for several millimeters in the shell plate before terminating. Other plates involved were not positively identified but were generally classified as semi-killed carbon steels. Investigation (visual inspection, hardness testing, chemical analysis, Charpy V-notch testing, and drop-weight testing) supported the conclusions that the fracture was initiated by weld imperfections and propagated in a brittle manner as a result of service stresses acting on the plate having low toughness at the low service temperatures encountered. Recommendations included that the specifications for the steel plates be modified to include a toughness requirement and that improved welding and inspection practices be performed to reduce the incidence of weld imperfections.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0007736
EISBN: 978-1-62708-219-8
Abstract
Single 6.4 mm (0.25 in.) post-tensioning wires failed in a parking garage in the southern portion of the United States. Several failed wires were removed and the lengths were examined for signs of corrosion using SEM metallography. The scans showed localized shallow pitting, and chloride was detected in some of the pits. The test also revealed an initial crack that was probably caused by hydrogen embrittlement. Since no chloride was detected on the fracture surface, and none was detected in the overlying concrete, the corrosion appears to have begun prior to the wires' placement in the concrete.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047512
EISBN: 978-1-62708-219-8
Abstract
During construction of a revolving sky-tower observatory, a 2.4 m (8 ft) diam cylindrical column developed serious circumferential cracks overnight at the 14 m (46 ft) level where two 12 m (40 ft) sections were joined by a girth weld. The temperatures ranged from 12 deg C (53 deg F) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding, choice of a more favorable electrode to avoid porosity, careful termination of all welds to avoid formation of notches, and completion of all welds before other sections of the column are erected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001151
EISBN: 978-1-62708-219-8
Abstract
A portion of the roof of a single story building collapsed during a thunder storm. A failure analysis was conducted to determine whether this structural failure was due to improper design, substandard construction materials, faulty erection, or extreme weather conditions. The failure analysis consisted of an onsite inspection, macrofractographic examination of the fractures where the girders were welded to the columns, macrofractographic examination of the fractured trusses, metallographic examination of the girder and truss materials, chemical analysis of the low-carbon steel girder and truss materials, and mechanical testing of the truss material. It was concluded that substandard structural components in combination with faulty construction was responsible for this service failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047113
EISBN: 978-1-62708-219-8
Abstract
A portion of a 19 mm (0.75 in.) diam structural steel bolt was found on the floor of a manufacturing shop. This shop contained an overhead crane system that ran on rails supported by girders and columns. Inspection of the crane system revealed that the bolt had come from a joint in the supporting girders and could be considered one of the principal fasteners in the track system. Analysis (visual inspection, metallographic exam, and hardness testing) supported the conclusions that fatigue induced by the overhead movement of the crane produced failure of the bolt. The bolt was deficient in strength for the cyclic applied loads in this case and probably was not tightened sufficiently. Recommendations included removing the remaining bolts in the crane support assembly and replacing them with a higher-strength, more fatigue-resistant bolt, for example, SAE grade F, 104 to 108 HRB. The bolts should be tightened according to the specifications of the manufacturer, and the system should be periodically inspected for correct tightness.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
Abstract
In 1979, during a routine bridge inspection, a fatigue crack was discovered in the top flange plate of one tie girder in a tied arch bridge crossing the Mississippi River. Metallographic analysis indicated a banding or segregation problem in the middle of the plate, where the carbon content was twice what it should have been. Based on this and results of ultrasonic testing, which revealed that the banding occurred in 24-ft lengths, it was decided to close the bridge and replace the defective steel. The steel used in the construction of this bridge was specified as ASTM A441, commonly used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001544
EISBN: 978-1-62708-219-8
Abstract
A large crack developed at a girder-truss joint area of the Fremont bridge in Portland, OR, on 28 Oct 1971. It occurred during a positioning procedure involving a junction piece welded to a girder, starting as a brittle fracture and terminating in plastic hinges in the girder web welds. The arch rib top plate, as it met the main girder, formed a composite beam of A588/A36 composition. Investigation showed the original design of the failed component called for an angle of high geometric stress concentration (90 deg with no radius) in a region of substantial transverse weld joints. While the material met chemical and mechanical property requirements, tests showed it had low fracture toughness and critical-sized flaws oriented normal to the principal stress in the failed junction piece. Fabrication procedures resulted in high residual stresses and a metallurgical notch at the radius in the junction piece. Stresses induced during jacking (the procedure used to raise bridge components into position) applied the stresses in the critical radius that triggered the cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001221
EISBN: 978-1-62708-219-8
Abstract
During the construction of a prestressed concrete viaduct, several 12.2 mm diam wires ruptured after tensioning but before the channels were grouted. They were made of heat treated prestressed concrete steel St 145/160. While the wire bundles, each containing over 100 wires, were being drawn into the channels they were repeatedly pulled over the sharp edges of square section guide blocks. The fractures were initiated at these chafe zones. It was concluded that the chafing of the wires on the edges of the guide blocks, particularly the resulting martensite formation, caused the wires to rupture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001150
EISBN: 978-1-62708-235-8
Abstract
A number of rotating blades in a diffuser at a sugar beet processing plant fabricated from rectangular bars cut from rolled carbon-manganese steel plate fractured brittlely. However, apparently identical blades underwent significant plastic deformation without fracture. Inspection of both fractured and bent blades revealed similar preexisting cracks at the toes of bar attachment welds. Metallographic examination of the bent and the fractured bars revealed they had been cut parallel and transverse, respectively, to the rolling direction of the steel plate. Due to the combined effects of the low fracture toughness of the plate on planes parallel in the rolling direction, the presence of the preexisting cracks, and the relatively large section thickness of the bars, the bars whose lengths were transverse to the rolling direction fractured brittlely when subjected to impact loads. Had the poor transverse properties of thick-section plate been recognized, and all the bars properly cut with respect to the rolling direction, the premature fractures would not have occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048767
EISBN: 978-1-62708-235-8
Abstract
The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001188
EISBN: 978-1-62708-235-8
Abstract
A short fracture section of a forged and normalized Ck 35 (DIN 17200) steel slide showed three distinct zones: a dark colored crystalline area, an incipient crack propagating into a far advanced, rubbed fracture surface, and a fine crystalline final break. Metallographic examination showed the dark incipient crack was present before the last heat treatment and was oxidized and decarburized prior to the conclusion of the annealing process. The crack ran perpendicular to the fiber, so it was not formed before or during forging. It was a thermal stress crack produced during flame cutting of the middle section of the slide. The initial crack acted as a sharp notch favoring the formation of the fatigue fracture which lead to the failure of the slide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051866
EISBN: 978-1-62708-228-0
Abstract
Coiled tubing used in drilling operations failed at the halfway point of its estimated fatigue life. The failure was found to be transverse to the tubing axis. Visual examination revealed a flat fracture surface extending 13 mm with the rest of the fracture showing shear lips indicative of tensile overload. The flat portion of the fracture surface was typical of fatigue cracking. Fatigue striations were revealed by SEM. Corrosion pitting on the tubing ID from which the fatigue crack had propagated were observed on closer examination. The corrosion pitting was speculated to have occurred when the tubing was idle and fluids accumulated at the bottom of the tubing wraps. The coiled tubing was concluded to have failed prematurely due to low-cycle fatigue initiated at corrosion pitting sites. Corrosive attack on the coiled tubing was recommended to be reduced by completely removing fluids or modifying the fluids in the tubing or purging by flowing dry nitrogen to dry it out.
1