Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 97
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001790
EISBN: 978-1-62708-241-9
Abstract
The failure of a high-speed pinion shaft from a marine diesel engine was investigated. The shaft, which had been in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined to be an increase in service stresses after bearing replacement along with the presence of nonmetallic inclusions in the shaft.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001499
EISBN: 978-1-62708-236-5
Abstract
Three spur gears made from 8622 Ni-Cr-Mo alloy steel formed a straight-line train in a speed reducer on a rail-mounted overslung lumber carrier. The gears were submitted for nondestructive examination and evaluation, with no accompanying information or report. Two teeth on one of the gears were found to be pitted, one low on profile and the adjacent tooth high on profile. The mating gear had a similar characteristic, two adjacent teeth with evidence of pitting and the same difference in profile. It was correctly deduced that the pitting occurred because the gears were in a static position under a reverberating load for an extended period of time.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047823
EISBN: 978-1-62708-236-5
Abstract
High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked in a keyway and one of them fractured after a few months of operation. Visual examination of fractured shaft revealed that the cracks originated from one of the keyways and propagated circumferentially around the shaft. The shaft and coupling slippage was indicated by the upset keys and this type of fracture. The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001539
EISBN: 978-1-62708-236-5
Abstract
Overhaul mechanics discovered a crack in an AISI 4340 Cr-Mo-Ni alloy steel pivot bolt when grinding off the chromium plating. The bolt had served for an estimated 10,000 h and was replated when last overhauled. On checking the bolt, several fine cracks were found on the surface. A 6500x micrograph revealed the intergranular nature of a crack. By trying different grinding procedures, investigators were able to reproduce this type of failure in the laboratory. It was concluded that grinding cracks initiated the failure. It should be noted that governing specifications prohibit grinding on high-strength steel; chromium should be stripped by electrochemical methods.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0059924
EISBN: 978-1-62708-235-8
Abstract
The large steel ring produced for a nuclear application from a billet of 8822 steel was inspected. The large billet was first forged into a doughnut preform in a large press, and then formed into the ring by ring rolling. A straight-beam ultrasonic inspection was instituted and calibrated using the back-surface-reflection method to determine whether adequate ultrasonic penetration was available. Areas of indications were noted at approximately midheight and adjacent to the bore area. An axial angle-beam inspection from the outside was performed, mainly in the area of indications to reveal detectable indications. The indications were not considered serious enough to reject the forgings. A few small indications in the areas tested were revealed by magnetic particle inspection. The area was conditioned by grinding and polishing to obtain an additional inspection at a greater depth from the inside surface. A much more severe condition was revealed after the test. The indications were classified as areas of chemical segregation and nonmetallic inclusions. The ring was considered unsatisfactory for the application and replacement of the defective ring from an acceptable billet was the most economical solution.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089256
EISBN: 978-1-62708-235-8
Abstract
Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091009
EISBN: 978-1-62708-235-8
Abstract
A thick-walled tube that was weld fabricated for use as a pressure vessel exhibited cracks. Similar cracking was apparent at the weld toes after postweld stress relief or quench-and-temper heat treatment. The cracks were not detectable by nondestructive examination after welding, immediately prior to heat treatment. Multiple-pass arc welds secured the carbon-steel flanges to the Ni-Cr-Mo-V alloy steel tubes. Investigation (visual inspection, metallographic analysis, and evaluation of the fabrication history and the analysis data) supported the conclusion that the tube failed as a result of stress-relief cracking. Very high residual stresses often result from welding thick sections of hardenable steels, even when preheating is employed. Quenched-and-tempered steels containing vanadium, as well as HSLA steels with a vanadium addition, have been shown to be susceptible to this embrittlement. Manufacturers of susceptible steels recommend use of these materials in the as-welded condition.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047176
EISBN: 978-1-62708-235-8
Abstract
A ring clamp (8740 (AMS 6322), steel forged and cadmium plated) used for attaching ducts to an aircraft engine became loose after three hours of service. When the clamp was removed from the engine, the hinge tabs on one clamp half were found to be broken. Analysis (visual inspection and microscopic and metallographic examination) supported the conclusion that both hinge tabs on the clamp half fractured in a brittle manner as the result of gross overheating, or burning, during forging. The mechanical properties of the metal, especially toughness and ductility, were greatly reduced by burning. Evidence that burning was confined to the hinge end of the clamp indicated that the metal was overheated before or during the upset forging operation. Recommendations included notifying the supplier of the burned condition on the end of the clamp. The clamps should be macroetched before cadmium plating to detect overheating. The clamps in stock should be inspected to ensure that the metal had not been weakened by overheating during the upset forging operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
Abstract
The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x showed a brittle appearance at the fractures. Micrograph examination of an etched section disclosed several small cracks. Fracture of the parts may have occurred through similar cracks. Also observed was a burned layer approximately 0.075 mm (0.003 in.) deep on the latch surface, and hardness at a depth of 0.025 mm (0.001 in.) in this layer was 52 HRC (a minimum of 55 HRC was specified). Thus, the failure was caused by brittle fracture in the hardness-transition zone as the result of excessive impact loading. The burned layer indicated that the cracks had been caused by improper grinding after hardening. Redesign was recommended to include reinforcing the backing web of the tip, increasing the radius at the relief step to 1.5 x 0.5 mm (0.06 x 0.02 in.), the use of proper grinding techniques, and a requirement that the hardened zone extend a minimum of 1.5 mm (0.06 in.) beyond the step.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
Abstract
An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined thread groove was visible on the fracture surface. Heavy oxidation at elevated temperatures was indicated as most of the surface of the flaw was black. Fine secondary cracks aligned transverse to the growth direction was revealed by scanning electron microscopy. It was established that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0046238
EISBN: 978-1-62708-231-0
Abstract
Within about one month, several knuckle pins (AMS 6470 steel failed, and required to have a minimum case hardness of 92 h15N, a case depth of 0.4 to 0.5 mm (0.017 to 0.022 in.), and a core hardness of 285 to 341 HRB) used in engines failed over a range of 218 to 463 h in operation. Visual examination revealed beach marks typical of fatigue cracks that had nucleated at the base of the longitudinal oil hole. Micrographs of sections revealed a remelt zone and an area of untempered martensite within the region of the cracks. However, review of inspection procedures disclosed the pins had been magnetic-particle inspected by inserting a probe into the longitudinal hole. Evidence found supports the conclusions that the knuckle pins failed by fatigue fracture. The circular cracks at the longitudinal holes were the result of improper technique in magnetic-particle inspection. Thermal transformation of the metal also causes a stress concentration that may lead to fatigue failure. Recommendations included insulating the conductor to prevent arc burning at the base of the longitudinal oil hole. Also, a borescope or metal monitor could be used to inspect the hole for evidence of arc burning from magnetic-particle inspection.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
Abstract
A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went through the body of the gear. Wheel mileage of the assembly was 34,000 miles at the time of failure. All physical and metallurgical characteristics were well within specified standards, and both parts should have withstood normal loading conditions. The primary mode of failure was tooth bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore, it most likely was permanent misalignment within the assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001618
EISBN: 978-1-62708-219-8
Abstract
Arms bolted to powerline towers were falling off two weeks after installation. Metallurgical and chemical analysis performed on the base metal, weld zone, and heat-affected zone showed acceptable quality material. Residual stress appeared to be responsible for the high failure rate. The sources of residual stress included welding, environment, and assembly operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047817
EISBN: 978-1-62708-233-4
Abstract
A pushrod made by inertia welding two rough bored pieces of bar stock installed in a mud pump fractured after two weeks in service. The flange portion was made of 94B17 steel, and the shaft was made of 8620 steel. It was disclosed by visual examination that the fracture occurred in the shaft portion at the intersection of a 1.3 cm thick wall and a tapered surface at the bottom of the hole. The fatigue crack was influenced by one-way bending stresses initiated at the inner surface and progressed around the entire inner circumference. A heavily decarburized layer was detected on the inner surface of the flange portion and sharp corner was found at the intersection of the sidewall and bottom of the hole. It was concluded that the stress raiser due to the abrupt section change was accentuated by decarburized layer. As a corrective measure, the design of the pushrod was changed to a one-piece forging and circulation of atmosphere during heat treatment was permitted through a hole drilled in the flange end of the rod to avoid decarburization.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006417
EISBN: 978-1-62708-234-1
Abstract
A cadmium-plated 4340 Ni-Cr-Mo steel ballast elbow assembly was submitted for failure analysis to determine the element or radical present in an oxidation product found inside the elbow assembly. Energy-dispersive x-ray analysis in the SEM showed that iron was the predominant species, presumably in an oxide form. The inside surface had the appearance of typical corrosion products. Hardness measurements indicated that the 4340 steel was heat treated to a strength of approximately 862 MPa (125 ksi). It was concluded that the oxide detected on the ballast elbow was iron oxide. The possibility that the corrosion products would eventually create a blockage of the affected hole was great considering the small hole diameter (4.2 mm, or 0.165 in.). It was recommended that a quick fix to stop the corrosion would be to apply a corrosion inhibitor inside the hole. This, however, would cause the possibility of inhibitor buildup and the eventual clogging of the hole. A change in the manufacturing process to include a cadmium plating on the hole inside surface was recommended. This was to be accomplished in accordance with MIL specification QQ-P-416, Type II, Class 1. A material change to 300-series stainless steel was also recommended.
1