Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 137
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
Abstract
An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were damaged as a result of crankshaft failures. It was then decided to send the crankshafts for laboratory investigation to determine the cause of failure. The depth of the nitrided layer near fracture locations in the crankshaft, particularly at the fillet region where cracks were initiated, was determined by scanning electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure of the crankshaft. The partial absence of the nitrided layer in the fillet region, due to over-grinding, caused a decrease in the fatigue strength which, in turn, led to crack initiation and propagation, and eventually premature fracture. Signs of crankshaft misalignment during installation were also suspected as a possible cause of failure. In order to prevent fillet fatigue failure, final grinding should be done carefully and the grinding amount must be controlled to avoid substantial removal of the nitrided layer. Crankshaft alignment during assembly and proper bearing selection should be done carefully.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001764
EISBN: 978-1-62708-241-9
Abstract
High failure rates in the drive shafts of 40 newly acquired articulated buses was investigated. The drive shafts were fabricated from a low-carbon (0.45%) steel similar to AISI 5046. Investigators examined all 40 buses, discovering six different drive shaft designs across the fleet. All of the failures, a total of 14, were of the same type of design, which according to finite-element analysis, produces a significantly higher level of stress. SEM examination of the fracture surface of one of the failed drive shafts revealed fatigue striations near the OD and ductile dimpling near the ID, evidence of high-cycle fatigue. Based on the failure rate and fatigue life predictions, it was recommended to discontinue the use of drive shafts with the inferior design.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
Abstract
A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack extending radially from the bore to the surface of one of the tooth flanks. The crack runs the entire width of the bore, passing through an oil hole in the hub, across the spoke plate and out to the tip of one of the teeth. Design requirements call for the gear teeth to be carburized, while the remaining surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
Abstract
The main shaft in a locomotive turbocharger fractured along with an associated bearing sleeve. Visual and fractographic examination revealed that the shaft fractured at a sharp-edged groove between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove because of stress concentration.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001847
EISBN: 978-1-62708-241-9
Abstract
An investigation was conducted to determine what caused a bearing sleeve in a locomotive turbocharger to fail. The sleeve, which is made of nitrided 38CrMoAl steel, fractured at the transition fillet between the cylinder and plate. Visual examination revealed significant wear on the external surface of the cylinder, with multiple origin fatigue fracture appearing to be the dominant fracture mechanism. Metallurgical examination indicated that the nitrided layer was not as deep as it was supposed to be and had worn away on the outer surface of the sleeve, exposing the soft matrix underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth facilitated the propagation of fatigue cracks.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001821
EISBN: 978-1-62708-241-9
Abstract
A fire in a storage yard engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of the truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, following the girth welds that connect them to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on the metallography of the tank pieces, the approximate tank temperature at the onset of explosion was determined. Metallurgical analysis provided additional insights as well as a framework for making tanks less susceptible to this destructive failure mechanism.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
Abstract
Nineteen out of 26 bolts in a multistage water pump corroded and cracked after a short time in a severe working environment containing saline water, CO 2 , and H 2 S. The failed bolts and intact nuts were to be made from a special type of stainless steel as per ASTM A 193 B8S and A 194. However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where an aggressive chemistry is allowed to develop and attack local surfaces.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001830
EISBN: 978-1-62708-241-9
Abstract
An 18-MW gas turbine exploded unexpectedly after three hours of normal operation. The catastrophic failure caused extensive damage to the rotor, casing, and nearly all turbo-compressor components. Based on their initial review, investigators believed that the failure originated at the interface between two shaft sections held together by 24 marriage bolts. Visual and SEM examination of several bolts revealed extensive deterioration of the coating layer and the presence of deep corrosion pits. It was also learned that the bolts were nearing the end of their operating life, suggesting that the effects of fatigue-assisted corrosion had advanced to the point where one of the bolts fractured and broke free. The inertial unbalance produced excessive vibration, subjecting the remaining bolts to overload failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
Abstract
The failure of T12 reheater tubes that had been in service for only 3000 h was investigated. The thickness of the tubes was visibly reduced by heavy oxidation corrosion on the inner and outer walls. The original pearlite substrate completely decomposed. Uniform oxide scale observed on the inner wall showed obvious vapor oxidation corrosion characteristics. Corrosion originated in the grain boundary, and selective oxidation occurred due to ion diffusion in the substrate. The layered oxide scale on the inner wall is related to the different diffusion rates for different cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001785
EISBN: 978-1-62708-241-9
Abstract
A maintenance worker was injured when his 3/4 in. (19 mm) open-ended wrench failed, fracturing in overload fashion along the jaw. The failed wrench was unavailable for testing, but an identical one that failed in the same manner was acquired and subjected to hardness, chemistry, SEM, and metallurgical analyses. SEM imaging revealed microvoid coalescence within the fracture zone. The microvoids were flat and smooth edged indicating insufficient bonding. In addition, a cross sectional sample, mounted and etched using alkaline chromate, revealed an oxygen-rich zone in the jaw. It was concluded that the failures stemmed from forging laps in the jaw that broaching failed to remove.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
Abstract
Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation, the shoulder radius should be increased to alleviate stress and the working torsion angle of the bar should be decreased to improve safety factors.
1