Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 46
Transgranular fracture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001776
EISBN: 978-1-62708-241-9
Abstract
In this article, we report the outcome of an investigation made to uncover the premature fracture of crusher jaws produced in a local foundry. A crusher jaw that had failed while in service was studied through metallographic techniques to determine the cause of the failure. Our investigation revealed that the reason for the fracture was the presence of large carbides at the grain boundaries and in the grain matrix. This led to the formation of microcracks that propagated along the grain boundaries under in-service working forces. It is also believed that the precipitation of carbides at the grain boundaries may have occurred because of improper heat treatment, but not because of a deficiency in composition.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
Abstract
A heavy duty facing lathe failed when the tool post caught one of the jaws on the rotating chuck, causing the spline shaft that drives the main spindle to fracture. A detailed analysis of the fracture surfaces (including fractography, metallography, and analytical stress calculations) revealed areas of damage due to rubbing with evidence of cleavage fracture on the unaffected surfaces. The results of stress analysis indicated that repeated reversals of the spindle produced stresses exceeding the fatigue limit of the shaft material. These stresses led to the formation of microcracks in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089339
EISBN: 978-1-62708-233-4
Abstract
Leakage was identified around a coupling welded into a stainless steel holding tank that stored condensate water with low impurity content. The tank and fitting were manufactured from type 304 stainless steel. The coupling joint consisted of an internal groove weld and an external fillet weld. Cracking was found to be apparent on the tank surface, adjacent to the coupling weld. Chlorine, carbon, and oxygen in addition to the base metal elements were revealed by energy-dispersive x-ray spectrometric analysis. A great number of secondary, branching cracks were evident in the weld, heat-affected zone, and base metal. The branching and transgranular cracking was found to emanate primarily from the exterior of the tank. It was concluded that the tank failed as a result of stress-corrosion cracking that initiated at the exterior surface as aqueous chlorides, especially within an acidic environment, have been shown to cause SCC in austenitic stainless steels under tensile stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001621
EISBN: 978-1-62708-227-3
Abstract
A crankshaft flange from a marine diesel engine illustrated a less-common case of fretting-fatigue cracking. The crankshaft was from a main engine of a sea-going passenger/vehicle ferry. The afterface of the flange was bolted to the flange of a shaft driving the gearbox. Cracks observed were sharp, transgranular, and not associated with any decarburization or other microstructural anomalies in the steel. Cracking of this main engine crankshaft flange was very likely a consequence of fatigue cracking initiated at fretting damage. The cause of the fretting was from loosening of the bolts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
Abstract
A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical properties and alloy designation were not specified. Investigation (visual inspection, 187x SEM images, unetched 30x images, hardness testing, and chemical analysis) of both the failed adapter and an exemplar casting from known-good lot supported the conclusion that the casting failed as a result of brittle overload fracture due to excessive iron-zinc phase and gross porosity. These conditions acted synergistically to reduce the strength of the material. The composition was nonstandard, and the inherent brittleness suggested that it was unlikely that this material was an intentional proprietary alloy. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
Abstract
A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride. This and additional investigation (visual inspection, and 250x micrograph etched with aqua regia) supported the conclusion that the tubing failed by chloride SCC. Chlorides in the steam condensate also caused corrosion of the inner surface of the tubing. Stress was produced when the tubing was bent during installation. Recommendations included providing water treatment to remove chlorides from the system. Continuous flow should be maintained throughout the entire tubing system to prevent concentration of chlorides. No chloride-containing water should be permitted to remain in the system during shutdown periods, and bending of tubing during installation should be avoided to reduce residual stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
Abstract
One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six lines in the system had thru-wall cracks. Shallow incipient cracks were detected at the lowest elevations of one other line. The balance of the system had no signs of SCC attack. Chlorides and corrosion deposits in varying amounts were found throughout the system. The failure mechanism was transgranular, chloride, stress-corrosion cracking. Replacement decisions were based on the presence of SCC attack or heavy corrosion deposits indicative of extended exposure time to chloride-contaminated water. The existing uncracked pipe, about 75 percent of the piping in the system, was retained despite the presence of low level surface chlorides. Controls were implemented to insure that temperatures are kept below 150 deg F, or, walls of the pipe are moisture-free or the cumulative wetted period will never exceed 30 h.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001569
EISBN: 978-1-62708-229-7
Abstract
This paper reviews several fatigue failures from the waterwall, superheater, and economizer portions of the boiler, their causes and how they were mitigated and monitored. Some cases required simple field modifications by cutting or welding, repair of existing controls, and/or changes in maintenance. Nondestructive inspections by visual, magnetic particle, ultrasonic, and radiographic methods for detecting and monitoring damage are discussed. These failures are presented to provide hindsight that will help others in increasing the success rate for anticipating and analyzing the remaining life of other units.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001545
EISBN: 978-1-62708-236-5
Abstract
The presence of secondary, branching intergranular stress-corrosion cracking in a type 440C stainless bearing caused the analyst to overlook the real culprit, which was a mechanically-initiated, primary transgranular crack that propagated through the steel's hard chromium carbide. Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution. A more thorough analysis showed failure was caused by tube vibration. In a third case, a type 304 stainless steel bellows in a test loop was thought to have failed because of chloride stress corrosion. The report concluded with a recommendation that carbon steel be used as an alternative bellows material. Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed.
1