Update search
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Wendy L. Weiss
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001273
EISBN: 978-1-62708-215-0
Abstract
One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member and residual stresses from thread rolling likely contributed to the stresses for the cracking mechanism, along with the stresses induced by the supported load. The external surfaces of the hanger rods were reportedly exposed to a chloride-containing atmosphere, likely due to the biocide. Type 304 stainless steel is not a suitable material for this application, and materials that resist SCC, such as Inconel, should be considered.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001276
EISBN: 978-1-62708-215-0
Abstract
The carbon steel feedwater piping at a waste-to-energy plant was suffering from wall thinning and leaking after being in service for approximately six years. Metallographic examination of ring sections removed front the piping revealed a normal microstructure consisting of pearlite and ferrite. However, the internal surface on the thicker regions of the rings exhibited significant deposit buildup, where the thinned regions showed none. No significant corrosion or pitting was observed on either the internal or external surface of the piping. The lack of internal deposits on the affected areas and the evidence of flow patterns indicated that the wall thinning and subsequent failure were caused by internal erosion damage. The exact cause of the erosion could not be determined by the appearance of the piping. Probable causes of the erosion include an excessively high velocity flow through the piping, extremely turbulent flow, and/or intrusions (weld backing rings or weld bead protrusions) on the internal surface of the pipes. Increasing the pipe diameter and decreasing the intrusions on the internal surface would help to eliminate the problem.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001320
EISBN: 978-1-62708-215-0
Abstract
Severe pitting was found on the internal surfaces of SA-210 Grade C waterwall tubing of a coal-fired boiler at a cogeneration facility. Metallographic examination showed the pits to be elliptical, having an undercut morphology with supersurface extensions,. a type of pitting characteristic of acidic attack. Energy-dispersive X-ray spectroscope revealed the presence of chlorine in the pit deposits, indicating that the pitting was promoted by underdeposit chloride attack. The presence of copper in deposits on the internal surface of the tubing may have acted as a secondary factor. Acidic conditions may have formed during a low-pH excursion that reportedly occurred several years prior. To prevent future failures, severely damaged tubing must be replaced. Internal deposit buildup must be removed by chemical cleaning to prevent further pitting. Water quality needs continued monitoring and maintenance to ensure that another low-pH excursion does not occur.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.