Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Thomas J. Moore
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001032
EISBN: 978-1-62708-214-3
Abstract
A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick material was type 316 stainless steel. Macro- and microexaminations of specimens from the failed heat pipe were conducted. The fin cracking was caused by overheating that produced intergranular corrosion in both the fin and the wick. Recommendations for alleviating the corrosion problem included reducing the heat flux, redesigning the wick, and reducing the oxygen content of the sodium.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001033
EISBN: 978-1-62708-214-3
Abstract
An investigation of a Stirling engine after an aborted test run revealed that the regenerator screens had suffered substantial damage. During the run, the individual screens oscillated as the helium working fluid was shuttled through the regenerator. In localized areas, the 41 mu m (1600 mu in.) diam type 304 stainless steel wire screening had been torn and pieces were missing. Scanning electron microscope revealed that the fracture had occurred at wire crossover locations by a fatigue mechanism. The problem was solved by sintering the individual screens into a single unit.