Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Philip C. Perkins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001145
EISBN: 978-1-62708-217-4
Abstract
Cartridge-pneumatic starter systems are used on military aircraft. In the cartridge mode used for alert starts, the starter turbine is driven by hot gases produced through the controlled burning of a solid propellant cartridge within a closed chamber (the breech chamber/cartridge chamber assembly). Premature failures of steel breech chambers have been prevalent enough to cause serious concern. The breech chamber is fabricated from a 4340 Ni-Cr-Mo steel forging heat treated to a hardness in the range HRC 40 to 45. The failures have taken several forms, including fracture and unzipping of the chamber dome, burn-through of the dome, and shearing of bayonet locking lugs. Factors identified as significant in the failures are the pressure developed in the chamber and internal corrosion of the chamber in an environment that can produce stress-corrosion cracking. The interior configuration of the chamber and the stress distribution also have a bearing upon the failure modes. Several failures are reviewed to illustrate the problems.