Fatigue Fracture of a Steering Knuckle Caused by Deformation
-
Published:2019
Abstract
A steering knuckle used on an earthmover failed in service. The component fractured into a flange portion and a shaft portion. The flange was 27.9 cm (11 in.) in diam around which there were 12 evenly spaced 16 mm diam bolt holes. The shaft was hollow with a 10.5 cm (4 in.) OD and a wall thickness of 17 mm. The steering knuckle was made of 4340 steel and heat treated to a hardness of about 415 HRB (yield strength of about 1069 MPa, or 155 ksi). The vehicle had been involved in a field accident six months before the steering knuckle failed. Several components, including portions of the frame, had been damaged and replaced, but there was no observed damage to the steering. Analysis supported the conclusion that the fracture was the result of the prior accident, the most likely explanation being that the shaft was bent and that continued use caused a crack to initiate and propagate to fracture. No evidence of a defective design, improper microstructure, high inclusion count, or other stress-raising condition was observed. No recommendations were made.
Fatigue Fracture of a Steering Knuckle Caused by Deformation, ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment, ASM International, 2019, https://doi.org/10.31399/asm.fach.conag.c0047212
Download citation file:
Oct. 28 – Nov. 1 | San Diego
Keep up-to-date at the premier event for the microelectronics failure analysis community. Register today for ISTFA 2024!