Corrosion in Pyrotechnic Actuators
-
Published:2019
Abstract
Problems with materials compatibility were encountered in pyrotechnically driven devices used in a number of ordnance applications requiring rapid mechanical actuation. A fine bridgewire is located in contact with the chemical pyrotechnic, and the charge is ignited by electrical heating of the bridgewire. Evidence of severe corrosion was revealed on examination of the nickel-chromium-iron alloy bridgewire and the nickel-iron alloy pins. Metallic elements in the pin or bridgewire and substantial amounts of chlorine were detected from the x-ray spectra. Morphological changes indicative of decomposition and dissolution were revealed to have occurred in regions of the pyrotechnic that had been in contact with the bridgewire and pin surfaces by examination of the titanium-potassium perchlorate (Ti-K-Cl-O4) pyrotechnic. Substantial amounts of water were revealed to be associated with the surfaces of the titanium particles in the pyrotechnic by nuclear magnetic resonance. It was proposed that the chlorine-containing residue combined with the water from the pyrotechnic to form a thin aqueous film corroding the bridgewire and pins. A new cleaning procedure was implemented for the glass headers to eliminate the chloride contamination and a vacuum drying procedure was instituted for the pyrotechnic.
Corrosion in Pyrotechnic Actuators, ASM Failure Analysis Case Histories: Processing Errors and Defects, ASM International, 2019, https://doi.org/10.31399/asm.fach.process.c0049796
Download citation file:
Sept. 30 – Oct. 4 | Cleveland, Ohio
Keep up to date with the latest materials and processing technologies. Register today for IMAT 2024 & IFHTSE World Congress!