Fatigue Failure of a Carburized Steel Bevel Pinion Because of Misalignment
-
Published:2019
Abstract
Several teeth of a bevel pinion which was part of a drive unit in an edging mill failed after three months in service. Specifications required that the pinion be made from a 2317 steel forging and that the teeth be carburized and hardened to a case hardness of 56 HRC and a core hardness of 250 HRB. Two teeth were revealed by visual examination to have broken at the root and fatigue marks extending across almost the entire tooth were exhibited by the surface of the fracture. Cracking in all the tooth was showed by magnetic-particle inspection. The pinion was concluded to have failed by tooth-bending fatigue. Spalling was also noted on the pressure (drive) side of each tooth at the toe end which indicated some mechanical misalignment of the pinion with the mating gear that caused the cyclic shock load to be applied to the toe ends of the teeth.
Fatigue Failure of a Carburized Steel Bevel Pinion Because of Misalignment, ASM Failure Analysis Case Histories: Mechanical and Machine Components, ASM International, 2019, https://doi.org/10.31399/asm.fach.mech.c0048273
Download citation file:
Oct. 28 – Nov. 1 | San Diego
Keep up-to-date at the premier event for the microelectronics failure analysis community. Register today for ISTFA 2024!