Stress-Corrosion Cracking of Pitostatic System Connectors
-
Published:2019
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Stress-Corrosion Cracking of Pitostatic System Connectors, ASM Failure Analysis Case Histories: Air and Spacecraft, ASM International, 2019, https://doi.org/10.31399/asm.fach.aero.c0006409
Download citation file:
Oct. 28 – Nov. 1 | San Diego
Keep up-to-date at the premier event for the microelectronics failure analysis community. Register today for ISTFA 2024!