Fatigue Failure of an Aluminum Alloy Assembly at Spot Welds Because of Improper Heat Treatment
-
Published:2019
Abstract
Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall revealed that the engine air-intake bullet assembly had dislodged and was seated against the engine-inlet guide vanes at the 3 o'clock position. The bullet assembly consisted of an outer aerodynamic shell and an inner stiffener shell, both of 1.3 mm (0.050 in.) thick aluminum alloy 6061-T6, and four attachment clips of 1 mm (0.040 in.) thick alclad aluminum alloy 2024-T42. Each clip was joined to the outer shell by 12 spot welds and was also joined to the stiffener. Analysis (visual inspection, dye-penetrant inspection, and 10x/150x micrographs of sections etched with Keller's reagent) supports the conclusion that the outer shell of the bullet assembly separated from the stiffener because the four attachment clips fractured through the shell-to-clip spot welds. Fracture occurred by fatigue that initiated at the notch created by the intersection of the faying surfaces of the clip and shell with the spot weld nuggets. The 6061 aluminum alloy shell and stiffener were in the annealed (O) temper rather than T6, as specified. Recommendations included heat treating the shell and stiffener to the T6 temper after forming.
Fatigue Failure of an Aluminum Alloy Assembly at Spot Welds Because of Improper Heat Treatment, ASM Failure Analysis Case Histories: Air and Spacecraft, ASM International, 2019, https://doi.org/10.31399/asm.fach.aero.c0047072
Download citation file:
Sept. 30 – Oct. 4 | Cleveland, Ohio
Keep up to date with the latest materials and processing technologies. Register today for IMAT 2024 & IFHTSE World Congress!