Stress-Corrosion Cracking of a Forged Aircraft Lug
-
Published:2019
Abstract
During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from aluminum alloy 2014-T6. Investigation (visual inspection, 2x views, and 140X micrographs etched with Keller's reagent) supported the conclusion that the cause of failure was SCC resulting from exposure to a marine environment. The fracture occurred in normal operation at a point where damage from pitting and intergranular corrosion acted as a stress raiser, not because of overload. The pitting and intergranular attack on the lug were evidence that the surface protection of the part had been inadequate as manufactured or had been damaged in service and not properly repaired in routine maintenance. Recommendations included anodizing the lug and barrel in sulfuric acid and giving them a dichromate sealing treatment, followed by application of a coat of paint primer. During routine maintenance checks, a careful examination was suggested to look for damage to the protective coating, and any necessary repairs should be made by cleaning, priming, and painting. Severely corroded parts should be removed from service.
Stress-Corrosion Cracking of a Forged Aircraft Lug, ASM Failure Analysis Case Histories: Air and Spacecraft, ASM International, 2019, https://doi.org/10.31399/asm.fach.aero.c0091678
Download citation file:
Sept. 30 – Oct. 4 | Cleveland, Ohio
Keep up to date with the latest materials and processing technologies. Register today for IMAT 2024 & IFHTSE World Congress!