Failure by Stress-Corrosion Cracking of an Ejection Seat Swivel
-
Published:2019
Abstract
A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed that the cracking pattern initiated and progressed by an intergranular failure mechanism. It was concluded that failure of the catapult attachment swivel fixture occurred by SCC. It was recommended that the 7075 aluminum ejection seat fixture be supplied in the T-73 temper to minimize susceptibility to SCC.
Failure by Stress-Corrosion Cracking of an Ejection Seat Swivel, ASM Failure Analysis Case Histories: Air and Spacecraft, ASM International, 2019, https://doi.org/10.31399/asm.fach.aero.c0006387
Download citation file:
Oct. 28 – Nov. 1 | San Diego
Keep up-to-date at the premier event for the microelectronics failure analysis community. Register today for ISTFA 2024!