Broken Back up Rolls from a Broad Strip Mill
-
Published:2019
Abstract
Several back up rolls of 1400 mm barrel diam from a broad strip mill broke after a relatively short operating time as a result of bending stresses when the rolls were dismantled. The fracture occurred in the conical region of the neck at about 600 mm diam. The rolls were shaped steel castings with 0.8 to 1.0% C, 1% Mn, 1% Cr, 0.5% Mo and 0.4% Ni and were heat treated to a tensile strength of 950 N/sq mm. Because the bending stress on mounting was only 42 N/sq mm in the fracture cross section, it was evident at the outset that material defects had promoted the fracture. In the case of this roll and the other broken rolls, the cracking and fracture were promoted by various casting defects. Investigation of the rolls showed that both the breaking off of the neck and the disintegration of the barrel edges was caused by material defects, more exactly casting defects. The fractures on the other rolls examined were so badly rusted or contaminated that they were incapable of yielding any information.
Friedrich Karl Naumann, Ferdinand Spies, Broken Back up Rolls from a Broad Strip Mill, ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment, ASM International, 2019, https://doi.org/10.31399/asm.fach.steel.c9001255
Download citation file:
Oct. 28 – Nov. 1 | San Diego
Keep up-to-date at the premier event for the microelectronics failure analysis community. Register today for ISTFA 2024!