Microstructural Analysis of Failure of a Stainless Steel Bone Plate Implant
-
Published:2019
Abstract
Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.
E. Proverbio, L.M. Bonaccorsi, Microstructural Analysis of Failure of a Stainless Steel Bone Plate Implant, ASM Failure Analysis Case Histories: Medical and Biomedical Devices, ASM International, 2019, https://doi.org/10.31399/asm.fach.med.c9001579
Download citation file:
Join Failure Analysis Society
The ASM Failure Analysis Society (FAS) is a community where failure analysis professionals from all over the world can learn and grow in their field.