Observatory Column That Cracked Because of High Residual Stresses and Stress Raisers in the Welds
-
Published:2019
Abstract
During construction of a revolving sky-tower observatory, a 2.4 m (8 ft) diam cylindrical column developed serious circumferential cracks overnight at the 14 m (46 ft) level where two 12 m (40 ft) sections were joined by a girth weld. The temperatures ranged from 12 deg C (53 deg F) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding, choice of a more favorable electrode to avoid porosity, careful termination of all welds to avoid formation of notches, and completion of all welds before other sections of the column are erected.
Observatory Column That Cracked Because of High Residual Stresses and Stress Raisers in the Welds, ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure, ASM International, 2019, https://doi.org/10.31399/asm.fach.bldgs.c0047512
Download citation file:
Sept. 30 – Oct. 4 | Cleveland, Ohio
Keep up to date with the latest materials and processing technologies. Register today for IMAT 2024 & IFHTSE World Congress!