Skip to Main Content


Two clevis-head self-retaining bolts used in the throttle-control linkage of a naval aircraft failed on the aircraft assembly line. Specifications required the bolts to be heat treated to a hardness of 39 to 45 HRC, followed by cleaning, cadmium electroplating, and baking to minimize hydrogen embrittlement. The bolts broke at the junction of the head and shank. The nuts were, theoretically, installed fingertight. The failure was attributed to hydrogen embrittlement that had not been satisfactorily alleviated by subsequent baking. The presence of burrs on the threads prevented assembly to finger-tightness, and the consequent wrench torquing caused the actual fractures. The very small radius of the fillet between the bolt head and the shank undoubtedly accentuated the embrittling effect of the hydrogen. To prevent reoccurrence, the cleaning and cadmium-plating procedures were stipulated to be low-hydrogen in nature, and an adequate post plating baking treatment at 205 deg C (400 deg F), in conformity with ASTM B 242, was specified. A minimum radius for the head-to-shank fillet was specified at 0.25 mm (0.010 in.). All threads were required to be free of burrs. A 10-day sustained-load test was specified for a sample quantity of bolts from each lot.

You do not currently have access to this chapter.
Don't already have an account? Register

Hydrogen Embrittlement of Cadmium-Plated Alloy Steel Self-Retaining Bolts in a Throttle-Control Linkage, ASM Failure Analysis Case Histories: Air and Spacecraft, ASM International, 2019,

Download citation file:

Close Modal

or Create an Account

Close Modal
Close Modal