Skip to Main Content

Abstract

Another failure in a turbogenerator, similar to the accidents in Toronto described in Metal Progress in July 1956, was due to the presence of fatigue cracks at ventilating holes. These acted as stress-raisers during temporary and minor overspeeding, inducing an almost instantaneous brittle failure which wrecked the machine, fortunately without human casualty.

Abstract

The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture-laden atmosphere. Recommendations included replacing all safety valves in the system with new open-top valves that had shot-peened and galvanized steel springs. Alternatively, the valve springs could be made from a corrosion-resistant metal-for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C.

You do not currently have access to this chapter.
Don't already have an account? Register

2019. "Steam Turbine Components", ASM Failure Analysis Case Histories: Power Generating Equipment

Download citation file:


Close
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal