Skip to Main Content

Abstract

Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together with nickel to a lesser extent. Local thinning, cavitation, and ductile deformation markings associated with the unmatched sample taken from the center of the fire showed the tube ruptured as a result of overheating. Overheating while the temperature recorder was off the chart caused severe loss of tube strength, resulting in ductile rupture. The minimum overheating temperature could be deduced at around 1200 deg F due to the presence of a eutectic observed metallographically within the surface corrosion products.

You do not currently have access to this chapter.
Don't already have an account? Register

Fulmer Research Institute Ltd., 2019. "Ruptured Stainless Steel Heater Tube", ASM Failure Analysis Case Histories: Oil and Gas Production Equipment

Download citation file:


Close
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal