Skip to Main Content

Abstract

A 208 cm (82 in.) ID steel aqueduct (ASTM A572, grade 42, type 2 steel) fractured circumferentially at two points 152 m (500 ft) apart in a section above ground. A year later, another fracture occurred in a buried section 6.4 km (4 mi) away. Both pipes fractured during Jan at similar temperatures and pressures. The pipe had a 24 mm wall thickness, and the hydrostatic head was 331 m (1085 ft). The air temperature was approximately -13 deg C (9 deg F), the water temperature approximately 0.6 deg C (33 deg F), and the steel temperature approximately -4 deg C (25 deg F). The pipe had been shop-fabricated in 12 m (40 ft) lengths, then shop welded into 24 m (80 ft) lengths. Field assembly was with bell-and-spigot joints. Investigation (visual inspection and Charpy V-notch testing) supported the conclusion that brittle fracture of the aqueduct pipe was attributed to a combination of stress concentrations at the toes of the fillet welds due to poor welding technique, including shop welds made without preheat, and a brittle condition of the steel at winter temperatures. Recommendations included revised welding techniques, installation of expansion joints, and the use of steel plate rolled from fully killed ingots.

You do not currently have access to this chapter.
Don't already have an account? Register

2019. "Failure of Welds in an Aqueduct Caused by Poor Welding Techniques", ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure

Download citation file:


Close
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal