Skip to Main Content

Abstract

Several large-diameter type 304L stainless steel impeller/propeller blades in a circulating water pump failed after approximately 8 months of operation. The impeller was a single casting that had been modified with a fillet weld buildup at the blade root. Visual examination indicated that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub configuration. A number of solutions involving material selection and impeller redesign were recommended.

You do not currently have access to this chapter.
Don't already have an account? Register

Samuel J. Brown, Edward V. Bravenec, 1992. "Flow-Induced Vibration Fatigue of Stainless Steel Impeller Blades in a Circulating Water Pump", Handbook of Case Histories in Failure Analysis, Khlefa A. Esaklul

Download citation file:


Close
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal