Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Walter Mack
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
EDFA Technical Articles (2012) 14 (3): 4–11.
Published: 01 August 2012
Abstract
View article
PDF
It seems that scaling of chip technology according to Moore’s Law will continue for digital functionalities (logic and memory); however, increasing system integration on chip and package levels, called “More than Moore,” has been observed in the past several years. This strong trend in the worldwide semiconductor industry enables more functionality, diversification, and higher value by creating smart microsystems. This article discusses the many challenges faced in FA of 3-D chips, where well-staffed and equipped FA labs are essential. Furthermore, FA is becoming an important strategic enabling factor for new products, not just another “cost factor.”