Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Vladimir V. Talanov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
EDFA Technical Articles (2012) 14 (3): 22–28.
Published: 01 August 2012
Abstract
View article
PDF
Failure analysis labs are fairly well equipped for dealing with shorts and leakages in stacked-die packages, but are at a disadvantage when it comes to opens, particularly those at the die or die interconnect level. This article presents a new FA technique that has the potential to make up for this shortcoming. The new method, called space domain reflectometry (SDR), is based on radio-frequency magnetic current imaging, and as the authors show, is capable of accurately locating a dead open in a double-stacked BGA package, even when the full stack is encapsulated in molding compound.