The best spatial resolution that can be achieved with far-field optical fault localization techniques is around 20 times larger than the critical defect size at the 45 nm technology node. There is also a limit on the laser power that can be safely used on 45 nm devices, which further compromises fault localization precision. In this article, the authors explain how they overcome these limitations using pulsed laser-induced imaging techniques and a refractive solid immersion lens. Two case studies show how the combination of pulsed-laser scanning optical microscopy and a solid immersion lens improves localization precision and detection sensitivity.

This content is only available as a PDF.
You do not currently have access to this content.