Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Journal
Article Type
Date
Availability
1-2 of 2
Ferritic stainless steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
AM&P Technical Articles (2024) 182 (7): 27–29.
Published: 01 October 2024
Abstract
View article
PDF
Stress corrosion cracking is an insidious form of damage that can occur when a susceptible metal is subjected to a tensile stress in a specific environment. To relieve tensile stresses at welded joints, postweld heat treatment can be helpful in reducing the susceptibility of carbon steel fabrications to SCC. When planning to use stainless steels in chloride-containing environments, it is advisable to select alloys that have been specifically developed to resist stress chloride cracking such as ferritic-austenitic (duplex) alloys, low-carbon ferritic alloys, and 6% Mo austenitic alloys or to select high-nickel alloys.
Journal Articles
AM&P Technical Articles (2012) 170 (10): 20–22.
Published: 01 October 2012
Abstract
View article
PDF
Compared to traditional power plant materials, creep strength enhanced ferritic steels require new approaches to nondestructive examination and weld repair. The metallurgical complexity of these steels prompted EPRI to conduct research to define and/or improve the detection limits of ultrasonic testing techniques, explore novel electromagnetic techniques, evaluate the sensitivity and applicability of acoustic emission testing, and conduct studies on improved weld repair procedures.