Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Journal
Article Type
Date
Availability
1-2 of 2
Embrittlement
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
AM&P Technical Articles (2024) 182 (7): 22–26.
Published: 01 October 2024
Abstract
View articletitled, Material Selection of 316 Stainless Steel for High-Pressure Hydrogen Systems
View
PDF
for article titled, Material Selection of 316 Stainless Steel for High-Pressure Hydrogen Systems
Selecting materials for high-pressure hydrogen systems requires balancing technical understanding of hydrogen embrittlement and business considerations. While the direct effect of hydrogen on materials is usually manifested as ductility loss under tension stress, the most concerning failure in a hydrogen system is fatigue. Although no material is immune to property degradation caused by hydrogen, Type 316 stainless steel is among the best in resisting hydrogen embrittlement.
Journal Articles
AM&P Technical Articles (2018) 176 (4): 44–45.
Published: 01 May 2018
Abstract
View articletitled, Case Study: Correctly Sizing an Industrial Conveyor Oven
View
PDF
for article titled, Case Study: Correctly Sizing an Industrial Conveyor Oven
In conveyor oven applications, product testing is critical to determine the part heatup time and therefore the oven length. This article is a case study of how product testing was performed for a hydrogen embrittlement relief process of fasteners to determine oven design parameters.