Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Journal
Article Type
Date
Availability
1-2 of 2
Chemical analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
AM&P Technical Articles (2025) 183 (1): 22–24.
Published: 01 January 2025
Abstract
View articletitled, Archaeometallurgical Materials Characterization
View
PDF
for article titled, Archaeometallurgical Materials Characterization
This article summarizes the more common analytical techniques for studying ancient metal artifacts, illustrated by case histories. There are two main classifications: noninvasive and invasive techniques. This distinction is of prime importance because some heritage objects may be too rare or valuable for invasive sampling, or there may be ethical objections to certain types of examination. Noninvasive examination of ancient metal artifacts is important, yet it cannot provide the detailed information obtainable from invasive techniques. This is especially true when artifacts contain “hidden” damage and there is also a need for accurate quantitative analyses.
Journal Articles
AM&P Technical Articles (2012) 170 (11): 16–19.
Published: 01 November 2012
Abstract
View articletitled, New Multidetector Solution Could Lead to Safer Alternatives to Faulty Silicone Breast Implants
View
PDF
for article titled, New Multidetector Solution Could Lead to Safer Alternatives to Faulty Silicone Breast Implants
Researchers at the University of Akron have developed a high-resolution characterization system that incorporates six gel permeation chromatography columns, two light scattering detectors, a refractive index sensor, and a viscometer. The new system facilitates the study of separated macromolecules and is expected to play a role in the development of safer biopolymers for breast implants.