Skip Nav Destination
Close Modal
Search Results for
welds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 417
Search Results for welds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
.... In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat...
Abstract
View Papertitled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-<span class="search-highlight">welds</span> with Various Levels of Creep Damage
View
PDF
for content titled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-<span class="search-highlight">welds</span> with Various Levels of Creep Damage
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1145-1158, October 21–24, 2019,
... Abstract Metallurgical factors affecting the fusion boundary failure and damage mechanism of DMWs (Dissimilar Metal Welds) between the CSEF (Creep Strength Enhanced Ferritic) steels and austenitic steels were experimentally and theoretically investigated and discussed. Long-term exservice DMWs...
Abstract
View Papertitled, Investigation on Long-Term Fusion Boundary Microstructure and Damage Mechanism of Ex-service Dissimilar Metal <span class="search-highlight">Welds</span>
View
PDF
for content titled, Investigation on Long-Term Fusion Boundary Microstructure and Damage Mechanism of Ex-service Dissimilar Metal <span class="search-highlight">Welds</span>
Metallurgical factors affecting the fusion boundary failure and damage mechanism of DMWs (Dissimilar Metal Welds) between the CSEF (Creep Strength Enhanced Ferritic) steels and austenitic steels were experimentally and theoretically investigated and discussed. Long-term exservice DMWs up to 123,000 hours were investigated; the precipitates near the fusion boundary were identified and quantitatively evaluated. Comparing with the other generic Ni-based weld material, MHPS original filler metal HIG370 (Ni bal.-16Cr-8Fe-2Nb-1Mo) showed superior suppression effect on fusion boundary damage of DMWs, which was verified by both of the microstructure observation and thermodynamic calculation. Based on the microstructure observation of crept specimen and ex-service samples of DMWs, temperature, time and stress dependence of fusion boundary damage of DMWs were clarified. Furthermore, fusion boundary damage morphology and mechanism due to precipitation and local constituent depletion was discussed and proposed from metallurgical viewpoints.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1159-1168, October 21–24, 2019,
... Abstract Dissimilar metal welds between T91 ferritic steels and TP347H austenitic alloys are commonly used in fossil power plants in China. Premature failure of such dissimilar welds can occur, resulting in unplanned plant outages that can cause huge economic losses. In this article...
Abstract
View Papertitled, Microstructural Evolution and High Temperature Failure of T91/TP347H Dissimilar <span class="search-highlight">Welds</span> Used in China Plants
View
PDF
for content titled, Microstructural Evolution and High Temperature Failure of T91/TP347H Dissimilar <span class="search-highlight">Welds</span> Used in China Plants
Dissimilar metal welds between T91 ferritic steels and TP347H austenitic alloys are commonly used in fossil power plants in China. Premature failure of such dissimilar welds can occur, resulting in unplanned plant outages that can cause huge economic losses. In this article, microstructural evolution of T91/TP347H dissimilar welds after different service conditions were studied, mechanical properties before and after service were also analyzed, a full investigation into the failure cause was carried out. The results show, the dissimilar metal welds in the as-welded condition consists of a sharp chemical concentration gradient across the fusion line, failure is attributed to the steep microstructural and mechanical properties gradients, formation of interfacial carbides that promote creep cavity formation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 169-180, October 11–14, 2016,
... Abstract 23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One...
Abstract
View Papertitled, Performance and Causes of Failure for Circumferential <span class="search-highlight">Welds</span> and <span class="search-highlight">Welded</span> Branch Connections for 23Cr-45Ni-7W Alloy Under Internal Pressure Conditions
View
PDF
for content titled, Performance and Causes of Failure for Circumferential <span class="search-highlight">Welds</span> and <span class="search-highlight">Welded</span> Branch Connections for 23Cr-45Ni-7W Alloy Under Internal Pressure Conditions
23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One is for straight tubes including the circumferential weld and the other is for welded branch connections. The test results for the circumferential welds ensured that the creep rupture location within the area of the base metal, as well as the time of rupture, can be assessed by mean diameter hoop stress. On the other hand, the creep rupture area was observed in the weld metal of the branch connections, although the creep strength of Inconel filler metal 617 was higher than that of HR6W. FE analyses were conducted using individual creep strain rates of the base metal, the heat affected zone and the weld metal to clarify this difference in the failures of these two specimens. Significant stress was only produced in the weld metal as opposed to the base metal, due to the difference in creep strain rates between the welded branch connections and creep crack were initiated in the weld metal. The differences between the two failure types were assessed using the ductility exhaustion method.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 590-599, October 11–14, 2016,
... Abstract The piping stress and thermal displacement corresponding to different types of riser rigid support and hanger devices in different installation directions have been calculated by means of finite element analysis, to further analyze the impact on cracking of adjacent steam tee welds...
Abstract
View Papertitled, Analysis on Effect of Piping Stress and Supports and Hangers on Cracking of Tee <span class="search-highlight">Welds</span>
View
PDF
for content titled, Analysis on Effect of Piping Stress and Supports and Hangers on Cracking of Tee <span class="search-highlight">Welds</span>
The piping stress and thermal displacement corresponding to different types of riser rigid support and hanger devices in different installation directions have been calculated by means of finite element analysis, to further analyze the impact on cracking of adjacent steam tee welds exerted by the constraint effect of riser rigid hangers on angular displacement. It can be seen from the analysis that a riser rigid hanger has a constraint effect on angular displacement, and such a constraint effect, however, is weak and limited on the piping stress and thermal displacement, so the piping stress and supports and hangers are not the main reasons for the cracking of tee welds. In addition, the calculation results alert that for an axial limiting hanger of riser with a dynamic axial pipe clamp and rigid struts, its constraint effect on angular displacement has a significant impact on the piping stress and thermal displacement.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 610-621, October 11–14, 2016,
... Abstract The fatigue crack propagation thresholds of SAW weld metal of 25Cr2Ni2MoV simulating product of fossil and nuclear power low pressure turbine rotor at different stress ratios are tested. There is a big dispersity of the test results, even at the same stress ratio. The double logarithm...
Abstract
View Papertitled, The Influence of Prior Austenite Grain Size on Fatigue Crack Growth Threshold of <span class="search-highlight">welds</span> in Cr-Mo-V Steel Components
View
PDF
for content titled, The Influence of Prior Austenite Grain Size on Fatigue Crack Growth Threshold of <span class="search-highlight">welds</span> in Cr-Mo-V Steel Components
The fatigue crack propagation thresholds of SAW weld metal of 25Cr2Ni2MoV simulating product of fossil and nuclear power low pressure turbine rotor at different stress ratios are tested. There is a big dispersity of the test results, even at the same stress ratio. The double logarithm curves of the fatigue crack growth rate and stress intensity factor range are researched. The difference of critical points between stable propagation region and near-threshold region in different specimens is found to be an important cause to the dispersity. Their locations in the specimens can be determined by the method of backward inference. After the observation of the microstructures around the critical points, a good correspondence between the size of prior austenite grain and the maximum size of monotonic plastic zone on the crack tip is confirmed. The difference of the critical points at the same stress ratio is caused by the inhomogeneous microstructures. So the inhomogeneous microstructures in the multi-pass and multi-layer weld metal contribute to the dispersity of the experimental threshold values.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 951-961, October 11–14, 2016,
... Abstract As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast...
Abstract
View Papertitled, Creep Rupture Strength of Dissimilar CB2-P92 FCW Joint <span class="search-highlight">Welds</span>
View
PDF
for content titled, Creep Rupture Strength of Dissimilar CB2-P92 FCW Joint <span class="search-highlight">Welds</span>
As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 962-973, October 11–14, 2016,
... Abstract Creep properties of 9Cr heat resistant steels can be improved by the addition of boron and nitrogen to produce martensitic boron-nitrogen strengthened steels (MarBN). The joining of this material is a crucial consideration in the material design since welds can introduce relatively...
Abstract
View Papertitled, Microstructural Characterisation of Creep Tested 9Cr <span class="search-highlight">Welds</span> for MarBN Steel
View
PDF
for content titled, Microstructural Characterisation of Creep Tested 9Cr <span class="search-highlight">Welds</span> for MarBN Steel
Creep properties of 9Cr heat resistant steels can be improved by the addition of boron and nitrogen to produce martensitic boron-nitrogen strengthened steels (MarBN). The joining of this material is a crucial consideration in the material design since welds can introduce relatively weak points in the structural material. In the present study, creep tests of a number of MarBN weld filler metals have been carried out to determine the effect of chemistry on the creep life of weld metal. The creep life of the weld metals was analysed, and the evolution of creep damage was investigated. Significant differences in the rupture life during creep have been observed as a function of boron, nitrogen and molybdenum concentrations in the weld consumable composition. Although the creep lives differed, the particle size and number in the failed creep tested specimens were similar, which indicates that there is a possible critical point for MarBN weld filler metal creep failure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 983-988, October 11–14, 2016,
... Abstract The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic...
Abstract
View Papertitled, Inspection and Evaluation of Defects on the <span class="search-highlight">Welds</span> of P92 Header
View
PDF
for content titled, Inspection and Evaluation of Defects on the <span class="search-highlight">Welds</span> of P92 Header
The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic and component sampling. By analyzing the results of on-site test and samples removed from the component, it is found that cracks existing in the welds are hydrogen induced delayed cracks. During the welding process and post-heating treatment (hydrogen bake-out), dehydrogenation was insufficient. This fact, combined with welding residual stresses resulted in the observed hydrogen induced cracking.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... Abstract In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds...
Abstract
View Papertitled, Evaluation of Hardness Levels of T24 Boiler Tube Butt <span class="search-highlight">Welds</span> Regarding SCC Susceptibility in High Temperature Water
View
PDF
for content titled, Evaluation of Hardness Levels of T24 Boiler Tube Butt <span class="search-highlight">Welds</span> Regarding SCC Susceptibility in High Temperature Water
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1160-1169, October 11–14, 2016,
... of weld thermal histories. For the first time, it was shown that ferrite can form in the IC HAZ of Grade 91 steel welds. The magnitude of the ferrite transformation was observed to decrease with faster cooling rates. The presence of ferrite in the simulated IC HAZ microstructure was shown to decrease...
Abstract
View Papertitled, Microstructural Evolution and Mechanical Properties in Simulated Heat Affected Zone Regions of Grade 91 <span class="search-highlight">Welds</span>
View
PDF
for content titled, Microstructural Evolution and Mechanical Properties in Simulated Heat Affected Zone Regions of Grade 91 <span class="search-highlight">Welds</span>
Grade 91 steel has been found to be susceptible to Type IV cracking in the base metal heat affected zone (HAZ). In order to better understand this type of failure, a study on the metallurgical reactions occuring within the HAZ was conducted, particularly within the fine grained (FG) and intercritical (IC) regions where Type IV cracking is most commonly found to occur. The course grained (CG), FG and IC regions of the HAZ in Grade 91 steel were simulated using a Gleeble 3800 Thermo-Mechanical Simulator. A dilatometer was used to determine the phase transformations occuring during simulation of weld thermal histories. For the first time, it was shown that ferrite can form in the IC HAZ of Grade 91 steel welds. The magnitude of the ferrite transformation was observed to decrease with faster cooling rates. The presence of ferrite in the simulated IC HAZ microstructure was shown to decrease the high temperature tensile strength and increase the high temperature elongation compared to HAZ regions that did not undergo ferrite transformation. Welding parameters such as heat input, preheat and interpass temperature can be selected to ensure faster cooling rates and reduce or potentially avoid formation of ferrite in the IC HAZ.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1182-1193, October 11–14, 2016,
... grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance...
Abstract
View Papertitled, Investigating Effects of Variations in Heat Treatment Parameters on Performance of CSEF <span class="search-highlight">Welds</span>
View
PDF
for content titled, Investigating Effects of Variations in Heat Treatment Parameters on Performance of CSEF <span class="search-highlight">Welds</span>
There is a constant need for improved knowledge of the influence of non-standard processing on the expected performance of creep strength enhanced ferritic (CSEF) materials as the total installed tonnage of these materials is rapidly increasing across the power generation industry. Cr-Mo-V steel grades micro-alloyed with niobium and titanium designed for pressurized equipment operating in the supercritical steam range proved to be very sensitive to relative minor variations in the principal heat treatment parameters time and temperature, when compared to the traditional Cr-Mo-V grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance, it is therefore of significant importance to have a good understanding of actual material properties for effective operation and plant life studies. This study investigated the effect and impact variations of post weld heat treatment time and temperature on mechanical properties of tungsten inert gas (TIG) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify welds suspected to have received non-standard PWHT cycles on Grade 91 pipework systems.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1199-1206, October 11–14, 2016,
... Abstract Unpredictable failures near the phase boundary in Grade 91 dissimilar metal welds (DMW) with nickel based filler metals represent a significant problem for the power generation industry. In order to determine the root cause for these failures, it is necessary to understand...
Abstract
View Papertitled, Dissimilar Metal <span class="search-highlight">Welds</span> in Grade 91 Steel
View
PDF
for content titled, Dissimilar Metal <span class="search-highlight">Welds</span> in Grade 91 Steel
Unpredictable failures near the phase boundary in Grade 91 dissimilar metal welds (DMW) with nickel based filler metals represent a significant problem for the power generation industry. In order to determine the root cause for these failures, it is necessary to understand the formation of the microstructure in the weld regions around the site of failure. Thermal histories were therefore measured inside the Grade 91 steel heat affected zone (HAZ) of an autogenous weld and of a DMW in the form of bead on plate with Alloy 625 to study the effect of the weld thermal cycle on microstructural formation. It was found that the HAZ in the DMW experienced longer dwell time at high temperatures because of the latent heat of fusion released during Alloy 625 solidification (1350 - 1125 °C). This allowed longer time for carbide dissolution and phase transformations in the DMW than in the autogenous weld. Additionally, the 625 filler metal created a large chemical potential gradient for carbon, which when combined with longer dwell times, yielded carbon depletion in the heat affected zone. Retention of δ ferrite in the coarse grained HAZ (CGHAZ) of DMWs was found to be an indicator for these mechanisms.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 713-719, October 25–28, 2004,
... Abstract Dissimilar joints between modern 10% chromium steels and low-alloy steels are unavoidable in new installations or upgrades of steam turbine components. Welds between 10CrMo9-10 (P22) and X10CrMoVNb9-1 (P91) steel pipes are often required. This paper studies this heterogeneous weld from...
Abstract
View Papertitled, Long-Term Mechanical Properties of Dissimilar <span class="search-highlight">Welds</span> Between P91 Grade and Low-Alloyed Steels
View
PDF
for content titled, Long-Term Mechanical Properties of Dissimilar <span class="search-highlight">Welds</span> Between P91 Grade and Low-Alloyed Steels
Dissimilar joints between modern 10% chromium steels and low-alloy steels are unavoidable in new installations or upgrades of steam turbine components. Welds between 10CrMo9-10 (P22) and X10CrMoVNb9-1 (P91) steel pipes are often required. This paper studies this heterogeneous weld from a steam turbine manufacturer's practical perspective. Two types of filler materials were used: P22- and P91-based weld metals. The integrity and mechanical properties of the prepared heterogeneous welds were evaluated according to the welding standard EN 288-3. Both approaches yielded satisfactory results. Additionally, creep rupture strength was evaluated. The creep rupture strength of both joints fell within the -20% scatter band of the P22 base material's creep rupture strength. The weld design with P91 filler material appeared to slightly outperform the P22-based approach for longer exposure times.
Proceedings Papers
High Temperature Cross-Weld Characterization of P22 and P91 Steel Welds by Micro-Tensile Testing
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 773-787, October 25–28, 2004,
... specimen testing reports on low-temperature behavior. However, cross-weld local material data at high service temperatures have not been reported yet. In the present study, MT tests are conducted across similar P22 and P91 steel welds at 550°C and 600°C, respectively. To study deformation mechanisms...
Abstract
View Papertitled, High Temperature Cross-<span class="search-highlight">Weld</span> Characterization of P22 and P91 Steel <span class="search-highlight">Welds</span> by Micro-Tensile Testing
View
PDF
for content titled, High Temperature Cross-<span class="search-highlight">Weld</span> Characterization of P22 and P91 Steel <span class="search-highlight">Welds</span> by Micro-Tensile Testing
Material properties and damage mechanisms exhibit significant variation across weldments. Micro tensile (MT) testing of specimens machined from specific narrow weldment zones is one method to characterize local property variation. Although limited, the literature data on micro-tensile specimen testing reports on low-temperature behavior. However, cross-weld local material data at high service temperatures have not been reported yet. In the present study, MT tests are conducted across similar P22 and P91 steel welds at 550°C and 600°C, respectively. To study deformation mechanisms and the role of surface condition on properties, specimens with different surface conditions (machined, polished, and electropolished) are tested. Two different loading rates of 0.2 mm/min and 0.5 mm/min are used to study the effect of loading rate on deformation and mechanical properties. Variations in weldment material properties are presented as a function of specimen surface conditions and loading speeds. Deformation behavior is studied on the side surfaces of tested micro-tensile specimens using SEM. Deformation is correlated to the microstructural constituent observed on side surfaces.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 855-871, October 25–28, 2004,
... Abstract In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI found that nickel-based filler metals provided significant service...
Abstract
View Papertitled, Alternative Filler Materials for Dissimilar Metal <span class="search-highlight">Welds</span> Involving P91 Materials
View
PDF
for content titled, Alternative Filler Materials for Dissimilar Metal <span class="search-highlight">Welds</span> Involving P91 Materials
In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI found that nickel-based filler metals provided significant service life improvements over 309 stainless steel filler metals. Improved joint geometries and additional weld metal reinforcement were determined to extend service life further. A new nickel-based filler metal was also developed, exhibiting thermal expansion properties similar to the low-alloy base metal and a low chromium content that would result in a smaller carbon-depleted zone than currently available fillers. However, this new filler metal was never commercialized due to a tendency for microfissuring, resulting in less than desired service life. This paper discusses further investigation into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... Abstract In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior...
Abstract
View Papertitled, Investigations on Nickel Based Alloys and <span class="search-highlight">Welds</span> for A-USC Applications
View
PDF
for content titled, Investigations on Nickel Based Alloys and <span class="search-highlight">Welds</span> for A-USC Applications
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 230-241, October 22–25, 2013,
... on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength...
Abstract
View Papertitled, Creep-Rupture Performance of Inconel Alloy 740 and <span class="search-highlight">Welds</span>
View
PDF
for content titled, Creep-Rupture Performance of Inconel Alloy 740 and <span class="search-highlight">Welds</span>
Inconel alloy 740/740H (ASME Code Case 2702) is an age-hardenable nickel-based alloy designed for advanced ultrasupercritical (A-USC) steam boiler components (superheaters, reheaters, piping, etc.). In this work, creep testing, beyond 40,000 hours was conducted a series of alloy 740 heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength. Based on these results, it was found that alloy 740 has the highest strength and temperature capability of all the potential A-USC alloys available today.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... Abstract The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat...
Abstract
View Papertitled, Phase Transformations and Microstructure in Gas Tungsten Arc <span class="search-highlight">Welds</span> of Grade 23 Steel Tubing
View
PDF
for content titled, Phase Transformations and Microstructure in Gas Tungsten Arc <span class="search-highlight">Welds</span> of Grade 23 Steel Tubing
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 615-626, October 22–25, 2013,
... Abstract Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used...
Abstract
View Papertitled, The Effect of Post <span class="search-highlight">Weld</span> Heat Treatment on the Creep Behaviour and Microstructural Evolution in Grade 92 Steel <span class="search-highlight">Welds</span> for Steam Pipe Applications
View
PDF
for content titled, The Effect of Post <span class="search-highlight">Weld</span> Heat Treatment on the Creep Behaviour and Microstructural Evolution in Grade 92 Steel <span class="search-highlight">Welds</span> for Steam Pipe Applications
Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used to achieve sufficient toughness in the weld. To relieve the internal stress in the welds and to stabilise their microstructures, a post weld heat treatment (PWHT) is commonly applied. The heat treatment conditions used for the PWHT have a significant effect on both the resulting microstructure and the creep behaviour of the welds. In this study, interrupted creep tests were carried out on two identical Grade 92 welds that had been given PWHTs at two different temperatures: 732°C and 760°C. It was found that the weld with the lower PWHT temperature had a significantly reduced stain rate during the creep test. In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT temperatures on the microstructure, initially the microstructures in the head portions of the two creep test bars were compared. This comparison was performed quantitatively using a range of electron/ion microscopy based techniques. It was apparent that in the sample subjected to the higher PWHT temperature, larger Laves phase particles occurred and increased matrix recovery was observed compared with the sample subjected to the lower PWHT temperature.
1