Skip Nav Destination
Close Modal
Search Results for
welded components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 288 Search Results for
welded components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 530-553, August 31–September 3, 2010,
... temperature welded components weld joint design welded piping weldment life assessment weldments strength Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International Conference August 31 September 3, 2010, Santa Fe, New Mexico, USA httpsdoi.org/10.31399/asm.cp.am...
Abstract
View Paper
PDF
The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum damage mechanics (CDM) analysis techniques which have been developed over the last 20 years. The complexity of the CDM methods and their data requirements has been a barrier to their more widespread use. The need for simplified methods has been driven by the need for risk assessment of in-service high temperature welded piping and headers around the world, the need to connect cross-weld data to weld joint design and assessment, and in general, the need to develop suitable guidelines for evaluating the strength of weldments relative to that of base metal.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 610-621, October 11–14, 2016,
.../10.31399/asm.cp.am-epri-2016p0610 Copyright © 2016 ASM International®. All rights reserved. J. Parker, J. Shingledecker, J. Siefert, editors The Influence of Prior Austenite Grain Size on Fatigue Crack Growth Threshold of welds in Cr-Mo-V Steel Components Xin Huo, Peng Wang Technology Development...
Abstract
View Paper
PDF
The fatigue crack propagation thresholds of SAW weld metal of 25Cr2Ni2MoV simulating product of fossil and nuclear power low pressure turbine rotor at different stress ratios are tested. There is a big dispersity of the test results, even at the same stress ratio. The double logarithm curves of the fatigue crack growth rate and stress intensity factor range are researched. The difference of critical points between stable propagation region and near-threshold region in different specimens is found to be an important cause to the dispersity. Their locations in the specimens can be determined by the method of backward inference. After the observation of the microstructures around the critical points, a good correspondence between the size of prior austenite grain and the maximum size of monotonic plastic zone on the crack tip is confirmed. The difference of the critical points at the same stress ratio is caused by the inhomogeneous microstructures. So the inhomogeneous microstructures in the multi-pass and multi-layer weld metal contribute to the dispersity of the experimental threshold values.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 842-851, October 21–24, 2019,
... the focus to the creep rupture strength of the weld metal. This paper illustrates the process experience of the steel foundry for production of heavy cast components in latest state of the art 9-12%Cr-MoCoVNbNB-alloyed cast steel grades and the newest state of development and prototype components in MARBN...
Abstract
View Paper
PDF
Advanced martensitic 9% chromium steels have been identified as the most favored group of materials for high temperature applications in thermal power plants. To extend the temperature range of martensitic steels up to 650°C large effort was put on the development of new alloy concepts. The so-called MARBN concept (Martensitic steel with defined Boron/Nitrogen relation) provides increased creep rupture strength due to higher solid solution strengthening and improved microstructural stability. The major improvement is the reduction of type IV cracking in welded joints, which shifts the focus to the creep rupture strength of the weld metal. This paper illustrates the process experience of the steel foundry for production of heavy cast components in latest state of the art 9-12%Cr-MoCoVNbNB-alloyed cast steel grades and the newest state of development and prototype components in MARBN cast steel grades. Metallurgy, solidification, heat treatment and welding are main items to be considered for development of new, complex steel grades for foundry processing with the help of empiric processing in test programs and thermo-physical simulation. As welding is an essential processing step in the production of heavy steel cast components a good out-of-position weldability is required. Moreover a stress-relieve heat-treatment takes place subsequently after welding for several hours. This contribution also deals with the development of matching welding consumables for the production of heavy cast components and discusses the challenges of defining appropriate welding and heat treatment parameters to meet the requirements of sufficient strength and toughness at ambient temperature. Additionally, first results of creep rupture tests are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 973-981, October 22–25, 2013,
... Abstract Qualifying welding procedures for repair of components in high temperature service requires careful consideration of factors including identification of the materials involved, existing mechanical properties and service operating parameters such as temperature, pressure and environment...
Abstract
View Paper
PDF
Qualifying welding procedures for repair of components in high temperature service requires careful consideration of factors including identification of the materials involved, existing mechanical properties and service operating parameters such as temperature, pressure and environment. Selection of weld metals to match, under match or overmatch base material as well as direct and indirect consequences on the heat-affected zone also require evaluation. Application of post weld heat treatment and ramifications where dissimilar base materials are involved are discussed plus the necessity of conducting tests at the operating temperatures and conditions where information is not available from the literature. Each of these factors is discussed and examples provided.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1044-1053, October 15–18, 2024,
... passes. EBW is a high-energy density welding technique with many advantages compared to traditional arc-based welding methods, including a narrow weld bead and heat-affected zone (HAZ). This can reduce component distortion and repeatable welds due to computer numerical control (CNC) systems and provide...
Abstract
View Paper
PDF
Local vacuum electron beam welding is an advanced manufacturing technology which has been investigated at Sheffield Forgemasters to develop as part of a cost-effective, reliable, agile, and robust manufacturing route for the next generation of civil nuclear reactors in the UK. A dedicated electron beam welding facility at Sheffield Forgemasters has been installed. This includes an x-ray enclosure, 100kW diode electron gun, 100T turntable, and weld parameter development vacuum chamber. A small modular reactor demonstrator vessel has successfully been manufactured with a wall thickness of 180 mm, including indication-free slope-in, steady- state and slope-out welding parameters. Electroslag strip cladding has also been investigated to demonstrate its viability in reactor pressure vessel manufacture. The electro-slag strip cladding method has been shown to produce high quality 60 mm strips on a 2600 mm inner diameter ring.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 169-180, October 11–14, 2016,
... Abstract 23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One...
Abstract
View Paper
PDF
23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One is for straight tubes including the circumferential weld and the other is for welded branch connections. The test results for the circumferential welds ensured that the creep rupture location within the area of the base metal, as well as the time of rupture, can be assessed by mean diameter hoop stress. On the other hand, the creep rupture area was observed in the weld metal of the branch connections, although the creep strength of Inconel filler metal 617 was higher than that of HR6W. FE analyses were conducted using individual creep strain rates of the base metal, the heat affected zone and the weld metal to clarify this difference in the failures of these two specimens. Significant stress was only produced in the weld metal as opposed to the base metal, due to the difference in creep strain rates between the welded branch connections and creep crack were initiated in the weld metal. The differences between the two failure types were assessed using the ductility exhaustion method.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 924-935, October 22–25, 2013,
... length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties...
Abstract
View Paper
PDF
Increasing demand on efficiency and power output of steam generators leads to new designs of welded rotors. The reason for rotor welding is the large size of rotors, which are difficult to produce in a single piece. Secondly, as there are varying operation conditions along the rotor length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties of a heterogeneous weld are subject of the investigation herein the current study, a heterogeneous weld of COST F and COST FB2 materials is investigated. The welding was performed by multi pass technique with overlaying welding beads that applied several heating cycles to heat affected zone. Metallographic investigation of the weld was performed and the weakest microstructure spots were detected. With the use of FEM simulation, appropriate heating/cooling cycles were obtained for the detected weak points. The temperature cycles obtained were subsequently applied to both base materials under laboratory conditions by induction heating. Creep properties of these materials were investigated. The influence of the initial base material’s grain size was also considered in the investigation. Two heating/cooling schedules were applied to both base materials with two grain sizes. Altogether, 8 different microstructures were examined in short term creep tests and the results were summarized.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 924-932, October 15–18, 2024,
... to address the problem and avoid the failure of welded components. The nuclear power industry has several applications with dissimilar welding and SC-susceptible materials, such as austenitic stainless steels, and Ni-based alloys. Compositional optimization stands out as a viable approach to effectively...
Abstract
View Paper
PDF
Solidification cracking (SC) is a defect that occurs in the weld metal at the end of the solidification. It is associated with the presence of mechanical and thermal stresses, besides a susceptible chemical composition. Materials with a high solidification temperature range (STR) are more prone to the occurrence of these defects due to the formation of eutectic liquids wetting along the grain boundaries. The liquid film collapses once the structure shrinks and stresses act during the solidification. Thus, predicting the occurrence of SC before the welding process is important to address the problem and avoid the failure of welded components. The nuclear power industry has several applications with dissimilar welding and SC-susceptible materials, such as austenitic stainless steels, and Ni-based alloys. Compositional optimization stands out as a viable approach to effectively mitigate SC in austenitic alloys. The integration of computational modeling into welding has significantly revolutionized the field of materials science, enabling the rapid and cost-effective development of innovative alloys. In this work, a SC resistance evaluation is used to sort welding materials based on a computational fluid dynamic (CFC) model and the alloy's chemical composition. An index named Flow Resistance Index (FRI) is used to compare different base materials and filler metals as a function of dilution. This calculation provides insights into the susceptibility to SC in dissimilar welding, particularly within a defined dilution range for various alloys. To assess the effectiveness of this approach, the relative susceptibility of the materials was compared to well-established experimental data carried out using weldability tests (Transvarestraint and cast pin tear test). The FRI calculation was programmed in Python language and was able to rank different materials and indicate the most susceptible alloy combination based on the dilution and chemical composition.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates...
Abstract
View Paper
PDF
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 950-966, October 25–28, 2004,
... hours) confirming their suitability for welded components in power stations. This development benefits not only power plant operators by reducing maintenance costs and downtime, but also builders, suppliers, and inspection bodies by providing a reliable solution for high-temperature applications...
Abstract
View Paper
PDF
This paper discusses the development of matching filler metals for new creep-resistant steels (P911 and P92) that enable higher operating temperatures (600-625 °C) in fossil fuel power plants, improving efficiency. The filler metals were evaluated with long-term testing (up to 30,000 hours) confirming their suitability for welded components in power stations. This development benefits not only power plant operators by reducing maintenance costs and downtime, but also builders, suppliers, and inspection bodies by providing a reliable solution for high-temperature applications. Additionally, matching filler metals developed for VM12 (12% Cr) martensitic steel are discussed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
... Abstract The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power...
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 960-972, October 22–25, 2013,
... conditions. For the safety use of high temperature welds in power plant components, the complete understanding of the creep degradation and establishment of creep life assessment for the welds is essential. In this paper creep degradation and initiation mechanism in welds of Cr-Mo steels and high strength...
Abstract
View Paper
PDF
In order to improve thermal efficiency of fossil-fired power plants through increasing steam temperature and pressure high strength martensitic 9-12%Cr steels have extensively been used, and some power plants have experienced creep failure in high temperature welds after several years operations. The creep failure and degradation in welds of longitudinally seam-welded Cr- Mo steel pipes and Cr-Mo steel tubes of dissimilar metal welded joint after long-term service are also well known. The creep degradation in welds initiates as creep cavity formation under the multi-axial stress conditions. For the safety use of high temperature welds in power plant components, the complete understanding of the creep degradation and establishment of creep life assessment for the welds is essential. In this paper creep degradation and initiation mechanism in welds of Cr-Mo steels and high strength martensitic 9-12%Cr steels are reviewed and compared. And also since the non-destructive creep life assessment techniques for the Type IV creep degradation and failure in high strength martensitic 9-12%Cr steel welds are not yet practically established and applied, a candidate way based on the hardness creep life model developed by the authors would be demonstrated as well as the investigation results on the creep cavity formation behavior in the welds. Additionally from the aspect of safety issues on welds design an experimental approach to consider the weld joint influence factors (WJIF) would also be presented based on the creep rupture data of the large size cross-weld specimens and component welds.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 230-241, October 22–25, 2013,
... [10, 11], but the current code case applies a weld 230 strength reduction factor (WSRF) or weld strength factor (WSF) of 0.70 [1] for seam-welded components. A reduction in creep strength of nickel-based alloys has been observed for other AUSC nickel-based alloys including Haynes 230 [12] and alloy...
Abstract
View Paper
PDF
Inconel alloy 740/740H (ASME Code Case 2702) is an age-hardenable nickel-based alloy designed for advanced ultrasupercritical (A-USC) steam boiler components (superheaters, reheaters, piping, etc.). In this work, creep testing, beyond 40,000 hours was conducted a series of alloy 740 heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength. Based on these results, it was found that alloy 740 has the highest strength and temperature capability of all the potential A-USC alloys available today.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
... material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi...
Abstract
View Paper
PDF
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 530-543, October 11–14, 2016,
... of the recent Grade 91 steel components was simply a function of the N:Al ratio. Indeed, and as depicted in Figure 1B, there appears to be a stronger correlation between the creep ductility of the parent material and the cross-weld creep performance in terms of number of inservice damaged stub to header welds...
Abstract
View Paper
PDF
Grade 91 steel has been widely utilized in power plants over the last 20 years. Its specification worldwide has dramatically increased since the acceptance of Code Case 1943 for this material in 1983. Recent evaluation of a combination of ex-service Grade 91 steel components and virgin material has provided a unique opportunity to independently assess the performance of a combination of base metal and weldments. This approach has been grounded in the fundamental objective of linking metallurgical risk factors in Grade 91 steel to the cross-weld creep performance. Establishing critical risk factors in 9Cr steels is regarded as a key consideration in the integration of a meaningful life management strategy for these complex steels. The potential metallurgical risk factors in Grade 91 steel have been fundamentally divided into factors which affect strength, ductility or both. In this study, two heats of ex-service Grade 91 steel which exhibit dramatic differences in strength and ductility have been evaluated in the ex-service condition and re-heat treated to establish a relevant set of strength:ductility variables. This set of variables includes [strength:ductility]: low:low, medium:low, low:high and medium:high. The influence of these strength:ductility variables were investigated for feature type cross-weld creep tests to better evaluate the influence of the initial base material condition on cross-weld creep performance.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 752-761, August 31–September 3, 2010,
... to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when...
Abstract
View Paper
PDF
Grade 91 steel, while increasingly popular in high-temperature power plants for both retrofit and new construction applications, faces significant challenges with Type IV cracking at the outer parent side edge of the weld heat affected zone. This structural integrity issue has led to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when Type IV life deviates from parent life. By combining test results from various temperatures, the method generates a generalized prediction of Type IV life that can be extrapolated to any temperature of interest, providing a practical lower bound estimate for service life of the weakest grade 91 material. This approach, which can be applied to service operating conditions to establish realistic inspection timelines for plant components, has already successfully identified early-stage Type IV cracking in two retrofit headers and is being expanded to additional grade 91 components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... Abstract Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds...
Abstract
View Paper
PDF
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1090-1097, October 21–24, 2019,
... initiation and influence of transient or steady operation on the SRC damage of tube-to-tube butt welds, component tests were performed at 650 °C / 70 bar for a period of 3800 hours. For this purpose a dedicated test rig was designed and built (Fig. 2). The components were made with welded tube samples...
Abstract
View Paper
PDF
In a European ultra-supercritical (USC) power station repaired reheater bundle tubes made out of 25% Chromium stainless steels developed stress relief damages at the tube-to-tube butt welds, leading to leakages after only 8.500 hours of operation. Laboratory investigations of the leakages revealed common features of stress relief cracking (SRC) such as highly localized intergranular cracking in the heat affected zone (HAZ) near the fusion line, creep void formation at the crack tip and around the crack. At that time no other SRC damages were known for the employed 25% Chromium stainless steel boiler tubes. This article briefly describes the SRC damage found on the repaired reheater bundle tubes. It further provides insight on the several laboratory tests employed to assess the SRC behavior of welded joints of different creep resistant stainless steels. Among the selected test methods were Slow-Strain-Rate-Tests (SSRT), static 3-point bending tests derived from the Van Wortel approach and component tests. The results provided by the described tests methods have shown that the SRC behavior of a given material combination must be assessed by different techniques. This is especially the case for the evaluation of potential countermeasures and for the determination of the service conditions leading to the highest susceptibility.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
... Abstract Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify...
Abstract
View Paper
PDF
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, October 15–18, 2024,
... components with a flexibility that would not be conceivable using conventional methods. Wire Arc Additive Manufacturing (WAAM) which is one of the most efficient additive manufacturing technologies is based on a conventional welding process like GMAW which is fully automated and guided by CAD/CAM on robotic...
Abstract
View Paper
PDF
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
1