Skip Nav Destination
Close Modal
Search Results for
waterwall tubing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 29
Search Results for waterwall tubing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
... Abstract Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been...
Abstract
View Papertitled, Corrosion Characteristics of Alloy622 Weld Overlay for <span class="search-highlight">Waterwall</span> <span class="search-highlight">Tubes</span> in Coal Fired Boilers
View
PDF
for content titled, Corrosion Characteristics of Alloy622 Weld Overlay for <span class="search-highlight">Waterwall</span> <span class="search-highlight">Tubes</span> in Coal Fired Boilers
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 565-572, October 22–25, 2013,
... Abstract T24 tube material (7CrMoVTiB10-10), with its combination of high creep strength and potential to be welded without using preheat, is regarded as a candidate waterwall material for Ultra Supercritical (USC) boilers. However, its reputed sensitivity to hydrogen and potential...
Abstract
View Papertitled, Potential Effects of HAZ Hardness on Use of T24 <span class="search-highlight">Tubing</span> for <span class="search-highlight">Waterwall</span> Applications
View
PDF
for content titled, Potential Effects of HAZ Hardness on Use of T24 <span class="search-highlight">Tubing</span> for <span class="search-highlight">Waterwall</span> Applications
T24 tube material (7CrMoVTiB10-10), with its combination of high creep strength and potential to be welded without using preheat, is regarded as a candidate waterwall material for Ultra Supercritical (USC) boilers. However, its reputed sensitivity to hydrogen and potential for secondary hardening may have adverse impacts on construction of waterwall panels. Doosan Babcock Ltd have investigated the response of welds made in T24 tubing to secondary hardening via changing hardness in a series of ageing heat treatment trials. Also, the response of the material to hydrogen infusion has been investigated
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 243-253, August 31–September 3, 2010,
... Abstract In order to assist in developing mechanistic and computational models for understanding the performance of current Fe-base waterwall tubing, characterization has been performed on three field-exposed low alloy steel waterwall tubes. The waterside oxide thickness was characterized using...
Abstract
View Papertitled, Characterization of Reaction Products from Field Exposed <span class="search-highlight">Tubes</span>
View
PDF
for content titled, Characterization of Reaction Products from Field Exposed <span class="search-highlight">Tubes</span>
In order to assist in developing mechanistic and computational models for understanding the performance of current Fe-base waterwall tubing, characterization has been performed on three field-exposed low alloy steel waterwall tubes. The waterside oxide thickness was characterized using standard metallographic techniques. Alloy and oxide chemical composition was characterized using electron microprobe analysis. Waterside scale thickness was measured as a function of location. Agreement between the measured and predicted values based on likely rate constants was poor.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
... environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection...
Abstract
View Papertitled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of <span class="search-highlight">Tubing</span> in Fossil-Fired Boilers
View
PDF
for content titled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of <span class="search-highlight">Tubing</span> in Fossil-Fired Boilers
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1372-1387, October 22–25, 2013,
... Abstract The use of the bainitic creep strength enhanced ferritic steel T/P23 has increased over the last decade in a wide range of applications including headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in weldments of this material...
Abstract
View Papertitled, Creep Crack Growth in T23 Weldments
View
PDF
for content titled, Creep Crack Growth in T23 Weldments
The use of the bainitic creep strength enhanced ferritic steel T/P23 has increased over the last decade in a wide range of applications including headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in weldments of this material, such as hydrogen induced cracking, reheat cracking and stress corrosion cracking. In order to help characterize high temperature cracking phenomena, including reheat cracking, a limited number of laboratory creep crack growth tests are being conducted as part of an ongoing project. Tests were run on as-welded sections with the test specimen crack-tip located in select zones of the weldment. Test temperatures are intended to bookend the range of applications from a waterwall condition of ~482°C (900°F) to the superheat/reheat condition of 565°C (1050°F). This paper describes the results of some early testing at 482°C (900°F). The tests provided useful insight into the cracking susceptibility of the material at this temperature with respect to not only time-dependent cracking, but also fatigue crack growth and fracture toughness. The paper includes details of the test method and results, as well as findings from post-test metallographic examinations of the tested specimens.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
... Abstract The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one...
Abstract
View Papertitled, Material Behavior of T23 and T24
View
PDF
for content titled, Material Behavior of T23 and T24
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 320-337, October 3–5, 2007,
... Abstract Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall...
Abstract
View Papertitled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
View
PDF
for content titled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall applications, the corrosion resistance has been demonstrated in both laboratory and field tests conducted over the last 5 years. In addition to corrosion resistance, the Alloy 33 has also shown that it is also resistant to cracking (although no material is 100% immune). In the superheater/reheater, the use of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials (such as FM-72) and is less expensive. As a result of these favorable experiences, Alloy 33 is now being used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
..., superheater tubing, and waterwall tubing. All of them have to meet creep strength requirements. In addition, pipes and headers, being heavy section components, are subject to fatigue induced by thermal stresses. Ferritic/martensitic steels are preferred because of their lower coefficient of thermal expansion...
Abstract
View Papertitled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
View
PDF
for content titled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622. INTRODUCTION Corrosion rates for unprotected steel waterwall tubes can be as high...
Abstract
View Papertitled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler <span class="search-highlight">Tubing</span> Life
View
PDF
for content titled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler <span class="search-highlight">Tubing</span> Life
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 337-356, October 25–28, 2004,
... Abstract Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several...
Abstract
View Papertitled, Weldability and Long-Term Corrosion Behavior of Fe-Al-Cr Alloys in Oxidizing/Sulfidizing Environments
View
PDF
for content titled, Weldability and Long-Term Corrosion Behavior of Fe-Al-Cr Alloys in Oxidizing/Sulfidizing Environments
Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several types of low NOx environments. In the present study, the susceptibility of FeAlCr weld overlay claddings to hydrogen cracking was evaluated using a gas-tungsten arc welding (GTAW) process. Microsegregation of alloying elements was determined for the FeAlCr welds and compared to a currently used Ni-based superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion resistance of the coatings. It was found that although there were slight differences in the corrosion behavior of the selected FeAlCr weld coatings, all FeAlCr based alloys exhibited superior corrosion resistance to the Ni-based superalloy during exposures up to 2000 hours.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 488-506, October 3–5, 2007,
... orifices in the tubes, but the highest temperatures will require a separate steam circuit. That steam circuit will be at the needed higher temperature but not at a higher pressure than the operating boiler. In the waterwalls the outer diameter metal temperature can be increased by the use of a greater wall...
Abstract
View Papertitled, Effects of Fuel Composition and Temperature on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
View
PDF
for content titled, Effects of Fuel Composition and Temperature on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion resistance of candidate materials through field testing. Evaluated materials include ferritic steels (SAVE12, P92, HCM12A), austenitic stainless steels (Super304H, 347HFG, HR3C), and high-nickel alloys (Haynes 230, CCA617, Inconel 740, HR6W), along with protective coatings (weld overlays, diffusion coatings, laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F). Promising materials were installed on retractable corrosion probes in three utility boilers burning different coal types. The probes maintained metal temperatures between 650°C (1200°F) and 870°C (1600°F). This paper presents new fireside corrosion probe results after approximately one year of exposure for Midwestern and Western coal types.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1001-1009, October 11–14, 2016,
... classical low alloy creep resistant steels 16Mo3, 13CrMo4-5 or 10CrMo9-10 for membrane waterwall construction for these service condition. New modified low alloy creep resistance T23 and T24 (7CrMoVTiB10-10) steels were developed for membrane waterwalls. Welding of these steels with small thickness (around...
Abstract
View Papertitled, Secondary Hardening of T24 Steel Weld Joints Performed at Incorrect Interpass Temperature and Low Temperature Heat Treatment
View
PDF
for content titled, Secondary Hardening of T24 Steel Weld Joints Performed at Incorrect Interpass Temperature and Low Temperature Heat Treatment
The efficiency of power plants is depending on the steam temperature and/or the steam pressure. Efficiency increasing from 35% to 42-45% require increasing of the steam temperature over 600°C and the pressure over 26 MPa. According to the designer opinion it is not profitable to use classical low alloy creep resistant steels 16Mo3, 13CrMo4-5 or 10CrMo9-10 for membrane waterwall construction for these service condition. New modified low alloy creep resistance T23 and T24 (7CrMoVTiB10-10) steels were developed for membrane waterwalls. Welding of these steels with small thickness (around 6.3 mm) should be enabled without preheating and post weld heat treatment (PWHT) due to the lower carbon content below 0.1%. High creep rupture strength (CRS) values are achieved by Ti, N and B elements alloyed to T24 steel. The original expectation that the welding small thickness without preheating was early overcome and was wrong. According to the present experience the T24 steel is welded with preheating at 150-250°C depending on the wall thickness and welded joint toughness in order to achieve required hardness and impact toughness values. Opinions on the T24 welded joints post weld heat treatment (PWHT) requirements are still inconsistent. Especially the membrane waterwalls of the supercritical power plants are still produced without PWHT.
Proceedings Papers
Preface
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, xxxvi-xxxvii, October 25–28, 2004,
... technology for the increase plant efficiency is the development of stronger high temperature materials. Worldwide research has resulted in numerous high strength alloys for heavy section piping, tubing, waterwalls, and steam turbine rotors. For heavy-section components such as pipes and headers, minimizing...
Abstract
View Papertitled, Preface
View
PDF
for content titled, Preface
Preface for the 2004 Advances in Materials Technology for Fossil Power Plants conference.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 1-15, October 3–5, 2007,
... temperatures. Alloys T92, T23 and HCM 12 were considered for application in waterwall tubing. The compositions and intended applications of the alloys are shown in Table1. * CCA617: Controlled Compositional Analysis, a modified composition of Alloy 617 2 Table 1 Candidate Alloys Alloy Haynes 230 INCO 740 CCA...
Abstract
View Papertitled, U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers
View
PDF
for content titled, U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers
One of the pathways for achieving the goal of utilizing the available large quantities of indigenous coal, at the same time reducing emissions, is by increasing the efficiency of power plants by utilizing much higher steam conditions. The US Ultra-Supercritical Steam (USC) Project funded by US Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) promises to increase the efficiency of pulverized coal-fired power plants by as much as nine percentage points, with an associated reduction of CO 2 emissions by about 22% compared to current subcritical steam power plants, by increasing the operating temperature and pressure to 760°C (1400°F) and 35 MPa (5000 psi), respectively. Preliminary analysis has shown such a plant to be economically viable. The current project primarily focuses on developing the materials technology needed to achieve these conditions in the boiler. The scope of the materials evaluation includes mechanical properties, steam-side oxidation and fireside corrosion studies, weldability and fabricability evaluations, and review of applicable design codes and standards. These evaluations are nearly completed, and have provided the confidence that currently-available materials can meet the challenge. While this paper deals with boiler materials, parallel work on turbine materials is also in progress. These results are not presented here in the interest of brevity.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 556-567, October 11–14, 2016,
... considered for waterwall tubes in supercritical plant applications. The first commercial application of the material in the UK was for replacement secondary superheater outlet headers at West Burton, Ferrybridge and Fiddlers Ferry power stations in 1990. Modified 9Cr has been used extensively since...
Abstract
View Papertitled, Development and Application of T91 Cold Weld Repair Techniques
View
PDF
for content titled, Development and Application of T91 Cold Weld Repair Techniques
The application of cold weld repair techniques in the power industry has been well documented. This type of repair is only considered when a conventional repair (involving post-weld heat treatment) is impracticable or the penalties of time and cost for conventional repair are sufficiently high. A typical cold weld repair in the UK has involved low alloy ferritic steel (½Cr½Mo¼V, 2¼Cr1Mo) components welded with nickel based SMAW consumables or ferritic FCAW consumables. Modified 9Cr steel components have been used in UK power plant since the late 1980’s for a number of applications, such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers, pipework and tubes. These repairs have been underwritten with extensive testing. This paper will describe the work performed on developing T91 cold weld repairs and where they have been applied on power plant.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 268-287, August 31–September 3, 2010,
... in recent years have indeed experienced accelerated tube wastage in the lower furnace. Consequently, application of coatings or weld overlays is often required to protect the waterwalls from accelerated corrosion wastage. As the metal temperatures of furnace walls are expected to increase in the advanced...
Abstract
View Papertitled, Online Gas Measurements in a Pilot-Scale Combustion Facility for Fireside Corrosion Study
View
PDF
for content titled, Online Gas Measurements in a Pilot-Scale Combustion Facility for Fireside Corrosion Study
A comprehensive fireside corrosion study was undertaken to better understand the corrosion mechanisms operating on the superheaters and lower furnace walls of advanced coal- fired utility boilers. The study intended to evaluate the fireside conditions generated from burning eight U.S. coals individually in a pilot-scale combustion facility. These coals consisted of a wide range of compositions that are of interest to the utility industry. The combustion facility was capable of producing the realistic conditions of staged combustion existing in coal-fired utility boilers. During each of the combustion tests, gas and deposit samples were collected and analyzed via in-furnace probing at selected locations corresponding to the waterwalls and superheaters. Testing of five of the eight coal groups has been completed to date. Results of these online measurements helped reveal the dynamic nature of the combustion environments produced in coal-fired boilers. Coexistence of reducing and oxidizing species in the gas phase was evident in both combustion zones, indicating that thermodynamic equilibrium of the overall combustion gases was generally unattainable. However, the amount of sulfur released from coal to form sulfur-bearing gaseous species in both the reducing and oxidizing zones was in a linear relationship with the amount of the total sulfur in coal, independent of the original sulfur forms. Such a linear relationship was also observed for the measured HCl gas relative to the coal chlorine content. However, the release of sulfur from coal to the gas phase appeared to be slightly faster and more complete than that of chlorine in the combustion zone, while both sulfur and chlorine were completely released and reacted to form respective gaseous species in the oxidizing zone. The information of sulfur and chlorine release processes in coal combustion generated from this study is considered new to the industry and provides valuable insight to the understanding of fireside corrosion mechanisms.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 255-267, August 31–September 3, 2010,
... their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube...
Abstract
View Papertitled, Modeling Fireside Corrosion of Heat Exchanger Materials in Advanced Energy Systems
View
PDF
for content titled, Modeling Fireside Corrosion of Heat Exchanger Materials in Advanced Energy Systems
This paper outlines a comprehensive UK-based research project (2007-2010) focused on developing fireside corrosion models for heat exchangers in ultra-supercritical plants. The study evaluates both conventional materials like T22 and advanced materials such as Super 304H, examining their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube materials operating under demanding conditions. The project addresses some limitations of existing models for these new service conditions and provides a brief review of the fuels and test environments used in the program. Although modeling is still limited, preliminary results have been presented, focusing on predicting fireside corrosion rates for furnace walls, superheaters, and reheaters under various service environments. These environments include those created by oxyfuel operation, coal-biomass co-firing, and more traditional coal firing.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 993-1000, October 3–5, 2007,
... will be collected and analyzed to determine its composition with particular attention being paid to contaminants that will be corrosive to boiler tube materials. Based on the analyses, materials will be selected and test specimens will be fabricated. Candidate waterwall and superheater/reheater materials...
Abstract
View Papertitled, Design Considerations for Advanced Materials in Oxygen-Fired Supercritical and Ultra-Supercritical Pulverized Coal Boilers
View
PDF
for content titled, Design Considerations for Advanced Materials in Oxygen-Fired Supercritical and Ultra-Supercritical Pulverized Coal Boilers
As the demand for worldwide electricity generation grows, pulverized coal steam generator technology is expected to be a key element in meeting the needs of the utility power generation market. The reduction of greenhouse gas emissions, especially CO 2 emissions, is vital to the continued success of coal-fired power generation in a marketplace that is expected to demand near-zero emissions in the near future. Oxycombustion is a technology option that uses pure oxygen, and recycled flue gas, to fire the coal. As a result, this system eliminates the introduction of nitrogen, which enters the combustion process in the air, and produces a highly-concentrated stream of CO 2 that can readily be captured and sequestered at a lower cost than competing post-combustion capture technologies. Oxycombustion can be applied to a variety of coal-fired technologies, including supercritical and ultra-supercritical pulverized coal boilers. The incorporation of oxycombustion technology in these systems raises some new technical challenges, especially in the area of advanced boiler materials. Local microclimates generated near and at the metal interface will influence and ultimately govern corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling characteristics in the superheater and heat recovery sections of the steam generator. The continuous recirculation of the flue gases in the boiler, may lead to increasing concentrations of deleterious elements such as sulfur, chlorine, and moisture. This paper identifies the materials considerations of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... design philosophy to that of the consortium s earlier effort [ref.1]. The test loop was installed within the boiler behind the rear waterwall hanger tubes, as shown in Fig. 1. Stainless steel tube shields were placed on the hanger tubes to reduce the possibility of steam cutting in the event of a crack...
Abstract
View Papertitled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
View
PDF
for content titled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
..., and water wall high temperature corrosion after low-nitrogen combustion retrofitting. boilers tubes combustion retrofitting fossil power units low-alloy steel steam side oxide scale exfoliation thick-wall components waterwall corrosion weld cracks Advances in Materials Technology for Fossil...
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
1