Skip Nav Destination
Close Modal
Search Results for
water wall tubes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 89
Search Results for water wall tubes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 537-548, October 22–25, 2013,
... Abstract In this paper, the performance of T23 and 12Cr1MoVG water wall tubes as well as their welded joints in engineering applications is reported. It was found that the T23 water wall tube may have water leak problems during its operation. In order to make sure the safe operation, leakage...
Abstract
View Papertitled, Research on <span class="search-highlight">Water</span> <span class="search-highlight">Wall</span> <span class="search-highlight">Tubes</span> and Welded Joints of 1000MW USC Tower Boiler
View
PDF
for content titled, Research on <span class="search-highlight">Water</span> <span class="search-highlight">Wall</span> <span class="search-highlight">Tubes</span> and Welded Joints of 1000MW USC Tower Boiler
In this paper, the performance of T23 and 12Cr1MoVG water wall tubes as well as their welded joints in engineering applications is reported. It was found that the T23 water wall tube may have water leak problems during its operation. In order to make sure the safe operation, leakage reasons of T23 water wall tube were analyzed and improvement measures were taken. Recommendations on the choice of water wall material of 1000MW USC tower boiler are given.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations...
Abstract
View Papertitled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler <span class="search-highlight">Tubing</span> Life
View
PDF
for content titled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler <span class="search-highlight">Tubing</span> Life
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
..., and water wall high temperature corrosion after low-nitrogen combustion retrofitting. boilers tubes combustion retrofitting fossil power units low-alloy steel steam side oxide scale exfoliation thick-wall components waterwall corrosion weld cracks Advances in Materials Technology for Fossil...
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing...
Abstract
View Papertitled, Evaluation of Hardness Levels of T24 Boiler <span class="search-highlight">Tube</span> Butt Welds Regarding SCC Susceptibility in High Temperature <span class="search-highlight">Water</span>
View
PDF
for content titled, Evaluation of Hardness Levels of T24 Boiler <span class="search-highlight">Tube</span> Butt Welds Regarding SCC Susceptibility in High Temperature <span class="search-highlight">Water</span>
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
...) overlays have been chosen most often to protect water wall tubing, and alloy 72 (ERNiCr-4) has been the most popular overlay for super-heater and reheater protection. However, Filler Metal 72 is beginning to show outstanding results in waterwall overlay, Filler Metal 72M is being evaluated for water wall...
Abstract
View Papertitled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through <span class="search-highlight">Walls</span> of <span class="search-highlight">Tubing</span> in Fossil-Fired Boilers
View
PDF
for content titled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through <span class="search-highlight">Walls</span> of <span class="search-highlight">Tubing</span> in Fossil-Fired Boilers
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 171-179, October 22–25, 2013,
... spectra used for 700°C boiler of AUSC power plant in China, as schematically shown in Figure 2. Figure 2 Candidate materials spectra used for 700°C boiler of A-USC PP in china For water cooling wall tubing, T23 and T91 are considered to be base-steel, on which some modification for the improvement...
Abstract
View Papertitled, Material Advancements for 700°C A-USC-Power Plants in China
View
PDF
for content titled, Material Advancements for 700°C A-USC-Power Plants in China
This paper briefly introduces the state-of-the-art of the research and development of candidate heat resistant materials used for the manufacturing of 700°C advanced ultra-super-critical (AUSC) fossil fuel power plants (PP) in China, especially, focus on the impressive progress in the past three years. The detailed advancements (technical exploration and industrial investigation) of candidate materials spectra for the boiler system of A-USC PP will be presented in the current paper, including novel ferritic heat resistant steels, advanced austenitic heat resistant steels, Fe- Ni-based alloys and Ni-based alloys, which serve and cover the steam temperature scope from 600°C to 720°C. Some newly available data associated with above materials will be released.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 993-1000, October 3–5, 2007,
...% O2) rather than the greenfield high oxygen (35-45%) design. If the sulfur compounds are not removed (i.e. by FGD) before the flue gas is recycled, the concentration of sulfur compounds increases by a factor of four (due to a 75% flue gas recycle flow) and will greatly increase water wall tube...
Abstract
View Papertitled, Design Considerations for Advanced Materials in Oxygen-Fired Supercritical and Ultra-Supercritical Pulverized Coal Boilers
View
PDF
for content titled, Design Considerations for Advanced Materials in Oxygen-Fired Supercritical and Ultra-Supercritical Pulverized Coal Boilers
As the demand for worldwide electricity generation grows, pulverized coal steam generator technology is expected to be a key element in meeting the needs of the utility power generation market. The reduction of greenhouse gas emissions, especially CO 2 emissions, is vital to the continued success of coal-fired power generation in a marketplace that is expected to demand near-zero emissions in the near future. Oxycombustion is a technology option that uses pure oxygen, and recycled flue gas, to fire the coal. As a result, this system eliminates the introduction of nitrogen, which enters the combustion process in the air, and produces a highly-concentrated stream of CO 2 that can readily be captured and sequestered at a lower cost than competing post-combustion capture technologies. Oxycombustion can be applied to a variety of coal-fired technologies, including supercritical and ultra-supercritical pulverized coal boilers. The incorporation of oxycombustion technology in these systems raises some new technical challenges, especially in the area of advanced boiler materials. Local microclimates generated near and at the metal interface will influence and ultimately govern corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling characteristics in the superheater and heat recovery sections of the steam generator. The continuous recirculation of the flue gases in the boiler, may lead to increasing concentrations of deleterious elements such as sulfur, chlorine, and moisture. This paper identifies the materials considerations of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 581-589, October 11–14, 2016,
... due to cracking; 3) For superheater and reheater tubes with a relatively high service temperature, or water wall tubes with relatively large circumferential thermal stresses and relatively complicated high heat load areas, such defects on the inner surfaces of tubes will reduce the creep life...
Abstract
View Papertitled, Research on Test and Evaluation of High Depth-To-Width Ratio Longitudinal Defects of Boiler <span class="search-highlight">Tube</span> Inner <span class="search-highlight">Wall</span>
View
PDF
for content titled, Research on Test and Evaluation of High Depth-To-Width Ratio Longitudinal Defects of Boiler <span class="search-highlight">Tube</span> Inner <span class="search-highlight">Wall</span>
To solve crack problems at the tube elbow induced by high depth-to-width ratio longitudinal defects on the inner wall of boiler tube, a number of testing experiments and testing methods have been applied to analysis on the sensitivity and correspondence of such defects, and it has been found that the flattening test has an outstanding advantage to detect such defects. However, according to relevant standards, the judgment is controversy. It can be noted from the research that if a steel tube with a ratio of wall thickness to outer diameter larger than 0.1 is turned prior to the flattening test, to reduce such ratio to be less than or equal to 0.1, the shortcomings in detection and evaluation of such defects specified in the current relevant standards of many countries can be effectively overcome. The method has been proposed and adopted preliminarily in the relevant Chinese standard.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 549-564, October 22–25, 2013,
... metal (Böhler Fox P24-WW / Thermanit P24 WW) 557 SA-welding of T24 water walls For SA-welding of water walls (tube to fin) a special flux (BB 305 or UV 305) is necessary. The water wall will not be PWH-treated. The hardness distribution of a cross sectional sample of such joints shows high values...
Abstract
View Papertitled, T/P24 (7CRMOVTIB10-10) a Bainitic-Martensitic Steel Grade for Super Heater and <span class="search-highlight">Water</span> <span class="search-highlight">Wall</span> Applications in Modern Ultra Super Critical Power Plants: Lessons Learned
View
PDF
for content titled, T/P24 (7CRMOVTIB10-10) a Bainitic-Martensitic Steel Grade for Super Heater and <span class="search-highlight">Water</span> <span class="search-highlight">Wall</span> Applications in Modern Ultra Super Critical Power Plants: Lessons Learned
This paper explores the development and qualification of a bainitic-martensitic steel grade and its matching welding consumables for power plants operating under ultra-supercritical steam conditions (605/625°C and 300/80 bar). It provides insights into recent developments and offers practical considerations for handling this material (grade T24) from the perspective of both tubular component manufacturers and welding consumable producers. The paper is structured into three main sections: (1) Development and qualification of the T24 steel base material. (2) Development, qualification, and recommendations for welding consumables compatible with T24 steel. (3) Experiences during manufacturing and installation of components using T24 steel, concluding with key takeaways.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 418-428, February 25–28, 2025,
... Economizer. The damaged components are tubes downstream of the inlet headers in many harps. Figure 2 shows the geometry of the harp HA-33 where the first FAC damage was found. Tube walls are thinned on the sides that is impinged by water from the inlet pipes. 419 Figure 2: HA-33 harp configuration In a cross...
Abstract
View Papertitled, Flow Accelerated Corrosion Investigation and Mitigation in a Heat Recovery Steam Generator
View
PDF
for content titled, Flow Accelerated Corrosion Investigation and Mitigation in a Heat Recovery Steam Generator
Recently, single-phase flow accelerated corrosion (FAC) has been found extensively in Thailand, especially in single shaft combined cycle power plant heat recovery steam generators, the design of which are compact and cannot be easily accessed for service. This takes at least one week for repairing and costs at least half a million dollar per shutdown. In this paper, the investigation of the single-phase FAC in a high-pressure economizer of a combined cycle power plant is demonstrated. Water chemical parameters such as pH and dissolved oxygen are reviewed, the process simulation of the power plant is performed to capture risk areas for the FAC. A computational fluid dynamics study of the flow is done to understand the flow behavior in the damaged tubes next to an inlet header. Some modifications such as flow distributor installation and tube sleeve installation were performed for short-term solutions. Moreover, new economizer headers are designed with low alloy material to mitigate the problem. The installation process of the newly fabricated headers is finally described. The findings in this paper serve as a guideline for FAC risk assessment, FAC investigation and mitigation, and service in compact heat recovery steam generators.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 777-790, October 22–25, 2013,
... overheating failures [4]. In recent years, feed water treatment is being changed from the conventional AVT (all volatile treatment) to CWT (combined water treatment) in Japanese power generation boilers to minimize 777 the corrosion of and deposition on the water wall tubes. The greatest difference between...
Abstract
View Papertitled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler <span class="search-highlight">Tube</span> Materials
View
PDF
for content titled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler <span class="search-highlight">Tube</span> Materials
CWT (combined water treatment) was introduced in Japan in 1990 and over 50 power generation boilers are now in operation. However, the effect of oxygenated treatment on the steam oxidation of the ferritic-martensitic steels and austenitic stainless steels that are used for superheaters and reheaters is currently far from clear. In this study, laboratory tests were used to examine the effect of the oxygen level of the feed water on the scale growth and the scale exfoliation propensity of T91 ferritic-martensitic steel and 300-series austenitic stainless steels, as represented by TP316H and TP347H (coarse- and fine-grained, respectively). The oxygen level of the feed water had little effect on the steam oxidation rates of all the steels tested. Hematite (Fe 2 O 3 ) formed in the outer layer of the oxide scales on both the ferritic and austenitic steels and is considered to have been encouraged in the simulated CWT atmosphere. The adhesion strength of the oxide scale formed on T91 in the simulated CWT atmosphere, that is, scale in which hematite was present, was lower than that of the oxide scale formed in the simulated AVT (all volatile treatment) atmosphere. The oxidation rate of fine-grained TP347H was confirmed to be slower than that of coarse-grained TP316H. Hematite significantly influenced the scale exfoliation of the austenitic steels and the critical oxide thickness for exfoliation decreased with increasing proportion of hematite in the outer scale.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 924-930, October 11–14, 2016,
..., Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p0924 Copyright © 2016 ASM International®. All rights reserved. J. Parker, J. Shingledecker, J. Siefert, editors SUPERCRITICAL WATER OXIDATION AND CREEP BEHAVIOUR OF BOILER TUBE MATERIALS Satu Tuurna, Rami Pohja, Sanni Yli-Olli, Sami...
Abstract
View Papertitled, Supercritical <span class="search-highlight">Water</span> Oxidation and Creep Behaviour of Boiler <span class="search-highlight">Tube</span> Materials
View
PDF
for content titled, Supercritical <span class="search-highlight">Water</span> Oxidation and Creep Behaviour of Boiler <span class="search-highlight">Tube</span> Materials
High efficiency in power generation is not only desirable because of economical reasons but also for enhanced environmental performance meaning reduced quantity of forming ash and emissions. In modern medium to large size plants, improvements require supercritical steam values. Furthermore, in future there will be an increasing share of renewables, such as wind and solar power, which will enhance the fluctuation of supply with the consequence that other power sources will have to compensate by operating in a more demanding cyclic or ramping mode. The next generation plant will need to operate at higher temperatures and pressure cycles coupled with demanding hot corrosion and oxidation environments. Such an operation will significantly influence the performance of materials used for boilers and heat exchanger components by accelerating oxidation rates and lowering mechanical properties like creep resistance. The paper discusses the oxidation behaviour of San25, 800H and alloy 263 in supercritical water at temperatures 650 and 700 °C at 250 bar, and compares the changes of mechanical properties of materials at these temperatures.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 243-253, August 31–September 3, 2010,
... reducing the thermal conductivity of the tube walls as a result of the low thermal conductivity of the scale (24). The steam-side oxidation behavior around the supercritical point (375-390°C at 276 bar) is complicated by the large changes that occur in the properties of water including heat absorption...
Abstract
View Papertitled, Characterization of Reaction Products from Field Exposed <span class="search-highlight">Tubes</span>
View
PDF
for content titled, Characterization of Reaction Products from Field Exposed <span class="search-highlight">Tubes</span>
In order to assist in developing mechanistic and computational models for understanding the performance of current Fe-base waterwall tubing, characterization has been performed on three field-exposed low alloy steel waterwall tubes. The waterside oxide thickness was characterized using standard metallographic techniques. Alloy and oxide chemical composition was characterized using electron microprobe analysis. Waterside scale thickness was measured as a function of location. Agreement between the measured and predicted values based on likely rate constants was poor.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 525-536, October 22–25, 2013,
... Abstract Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress...
Abstract
View Papertitled, Supercritical Unit Experience with Grade T23 Evaporator <span class="search-highlight">Tube</span> Failures
View
PDF
for content titled, Supercritical Unit Experience with Grade T23 Evaporator <span class="search-highlight">Tube</span> Failures
Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress-corrosion cracking (SCC), and a lesser number of fabrication-related hydrogen induced cracking (HIC), weld solidification cracking, and brittle cracking within tube swage sections were also experienced. Hundreds of tubes were replaced prior to Unit commissioning, due to both actual tube leaks and those replaced due to weldment cracking and other identified weld defects during radiographic testing. Elevated stress levels and material susceptibility (i.e. hardness in the as-welded condition) were considered the critical factors in the tube cracking.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1010-1017, October 11–14, 2016,
... and it is an imposing material for the making of boiler pipes and forgings at the temperature scope from 600 to 650 and the water wall tubing of 700 A-USC power plants, due to its excellent creep rupture strength and reasonable oxide resistance as well as its economic competitiveness. Acknowledgments The authors...
Abstract
View Papertitled, G115 Steel and Its Application for 600+°C A-USC-Power Plants
View
PDF
for content titled, G115 Steel and Its Application for 600+°C A-USC-Power Plants
G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C. The successful development of G115 extends the upper application temperature limitation of martensitic steel from 600°C to about 650°C. This breakthrough is imperative for the design and construction of 610°C to 650°C A-USC fossil fired power plants, from the viewpoint of the material availability and economics of coal fired power plant designs. This paper introduces the development history and progress of G115 steel. The strengthening mechanism of the novel martensitic steel is briefly discussed, and the optimized chemical composition and mechanical properties of G115 steel are described. The details of industrial trials of G115 tube and pipe at BaoSteel in the past years are reviewed, with the emphasis on the microstructure evolution during aging and creep testing. These tests clearly show that the microstructure of G115 steel is very stable up to the temperature of 650°C. Correspondingly, the comprehensive mechanical properties of G115 steel are very good. The creep rupture time is longer than 17000 hours at the stress of 120MPa and at the temperature of 650°C and 25000+ hours at the stress of 100MPa and at the temperature of 650°C, which is about 1.5 times higher than that of P92 steel. At the same time, the oxidation resistance of G115 steel is a little bit better than that of P92 steel. If G115 steel is selected to replace P92 pipes at the temperature scope from 600°C to 650°C, the total weight of the pipe can be reduced by more than 50% and the wall thickness of the pipe can be reduced up to about 55%. In addition, the upper application temperature limitation of G115 steel is about 30°C higher than that of P92 steel. Thus, G115 steel is a strong candidate material for the manufacturing of 600+°C advanced ultra-super-critical (A-USC) fossil fuel power plants in China and elsewhere.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 171-184, August 31–September 3, 2010,
... achievable using this system is shown in Figure 7. Using a set thermal gradient of 50 °C across the tube wall variation in the speed of the pump and consequently volume of water entering the bottom of the tube can be observed in the trace for the bottom thermocouple in Figure 7. 700 600 Temperature, °C 500...
Abstract
View Papertitled, The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials
View
PDF
for content titled, The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials
The drive for increased efficiency and carbon reduction in next-generation boilers is pushing conventional materials to their limits in terms of strength and oxidation resistance. While traditional isothermal testing of simple coupons provides some insight into material performance, it fails to accurately represent the heat transfer conditions present in operational boilers. This paper introduces a novel test method designed to evaluate the degradation of candidate materials under more realistic heat flux conditions. The method, applied to tubular specimens using both laboratory air and steam as cooling media, demonstrates a significant impact of thermal gradients on material performance. Initial comparisons between tubular heat flux specimens and flat isothermal specimens of 15Mo3 revealed increased oxidation kinetics and altered oxide morphology under heat flux conditions. The paper details the design of this heat flux test, presents results from initial work on 15Mo3 under air and steam conditions, and includes findings from further studies on oxides formed on 2-1/4Cr material under both heat flux and isothermal conditions. This research represents a crucial step toward more accurate prediction of material behavior in next-generation boiler designs.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 320-337, October 3–5, 2007,
..., Houston, TX, 1991 3. H.J. Cialone, I.G. Wright, R.A. Wood, Circumferential Cracking of Supercritical Boiler Water wall Tubes , Electric Power Research Institute, Palo Alto, CA, 1986 4. K. Luer, J. DuPont, A. Marder, C. Skelonis, Corrosion Fatigue of Alloy 625 weld claddings in Combustion Environments...
Abstract
View Papertitled, Alloy 33: Update on Field Experience in <span class="search-highlight">Water</span> <span class="search-highlight">Walls</span> and Superheaters
View
PDF
for content titled, Alloy 33: Update on Field Experience in <span class="search-highlight">Water</span> <span class="search-highlight">Walls</span> and Superheaters
Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall applications, the corrosion resistance has been demonstrated in both laboratory and field tests conducted over the last 5 years. In addition to corrosion resistance, the Alloy 33 has also shown that it is also resistant to cracking (although no material is 100% immune). In the superheater/reheater, the use of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials (such as FM-72) and is less expensive. As a result of these favorable experiences, Alloy 33 is now being used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
... source is placed on the one side of the separator sediment tube to form a constant magnetic field, and the detection device is placed on the other side of the separator sediment tube. The magnetic sensitivity detection device moves along the side wall of the separator sediment tube to detect the magnetic...
Abstract
View Papertitled, Study on the Magnetic Nondestructive Testing Technology for Oxide Scales
View
PDF
for content titled, Study on the Magnetic Nondestructive Testing Technology for Oxide Scales
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1036-1045, October 11–14, 2016,
... performed on tubes of two different wall thickness and diameter, and applying bending at different radii. Testing materials, manufacturing process and results are presented in the following Paragraphs. MATERIALS AND METHODS Flanges From a cast bar of Thor steel, 3 billets were cut in order to manufacture...
Abstract
View Papertitled, Manufacturing Experience of Thor 115 Components
View
PDF
for content titled, Manufacturing Experience of Thor 115 Components
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASME grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASME grade 91, yet allow being processed in the same fashion, permitting the re-use of consolidated best practices for boiler fabrication. In order to evaluate the possibility to produce complete pressure part systems, various tests to manufacture components have been performed on Thor pipes and tubes (i.e. finning, bending, welding) and on Thor forged material (i.e. flanges). In all cases consolidated industrial best practices used on ASME grade 91 were applied, and resulting properties met ASME requirements.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 101-124, October 11–14, 2016,
... and pipe for the boiler and heat exchanger sections of AUSC and sCO2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube...
Abstract
View Papertitled, Alloy 740H: Development of Fittings Capability for A-USC Applications
View
PDF
for content titled, Alloy 740H: Development of Fittings Capability for A-USC Applications
INCONEL alloy 740H has been specified for tube and pipe for the boiler and heat exchanger sections of AUSC and sCO 2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube sheets. The initial evaluation of alloy 740H properties, leading to ASME Code Case 2702, was done on relatively small cross-section tube and plate. The production of fittings involves the use of a wide variety of hot or cold forming operations. These components may have complex geometric shapes and varying wall thickness. The utility industry supply chain for fittings is largely unfamiliar with the processing of age-hardened nickel-base alloys. Special Metals has begun to address this capability gap by conducting a series of trials in collaboration with selected fittings manufacturers. This paper describes recent experiences in first article manufacture of several components. The resulting microstructure and properties are compared to the published data for tubular products. It is concluded that it will be possible to manufacture most fittings with properties meeting ASME Code minima using commercial manufacturing equipment and methods providing process procedures appropriate for this class of alloy are followed. INCONEL and 740H are registered trademarks of Special Metals Corporation.
1