Skip Nav Destination
Close Modal
Search Results for
water quenching
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 65
Search Results for water quenching
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
... of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type...
Abstract
View Papertitled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
View
PDF
for content titled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
Effects of Ni content and heat treatment condition on impact toughness and creep strength of precipitation strengthened 15Cr ferritic steels were investigated in order to discuss a possibility of improvement in both mechanical properties. Both creep strength and impact toughness of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed in the Ni added steels, and such microstructure reduced the precipitation strengthening effect slightly. On the other hand, increase in impact values of the steel indicated no relation to volume fraction of martensite phase. It was supposed that the impact toughness of ferrite phase itself was improved by solid solution treatment and addition of Ni.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 506-512, October 21–24, 2019,
... to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop...
Abstract
View Papertitled, Influence of γ′ Morphology on Hot Workability of Alloy U520 below the γ′-Solvus Temperature
View
PDF
for content titled, Influence of γ′ Morphology on Hot Workability of Alloy U520 below the γ′-Solvus Temperature
The relationship between the hot workability and the precipitation morphology of γ′ phase in the Alloy U520 was examined with a focus on the presence of γ′-nodule. To change the morphology of γ’ phase, forged bars of the Alloy U520 were solution treated followed by cooling process with the cooling rates of 5~100 K/h. After the heat treatment, both γ’ phases of intragranular particle and nodule along grain boundaries were observed, and the both sizes increased by slowing down the cooling rate. That is, the area fraction of γ’-nodule increased from about 0.1 % in the sample cooled at 100 K/h to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop in ductility. EBSD analysis revealed that dynamic recrystallization (DRX) was often occurred in grain interior but suppressed at γ′-nodule area, indicating that presence of γ′-nodule had a negative influence on hot workability at subsolvus temperature.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 51-67, October 25–28, 2004,
... and 625 casting weight: 750kg Heat treatment: 617: 1170C/water quench 625: 1200C/water quench Cast analysis: Alloy C 617 0.06 Ni bal 625 0.02 bal Fe Cr Mo Co Nb Ti Al Mn Si P S Others 0.6 21.6 9.2 12.2 <0.01 0.53 1.09 0.27 0.34 <0.01 0.001 N, 0.021 Cu, 0.02 0.5 21.9 8.4 0.2 3.59 0.3 0.3 0.16 0.18 0.005...
Abstract
View Papertitled, Materials Developments for Ultrasupercritical Steam Turbines
View
PDF
for content titled, Materials Developments for Ultrasupercritical Steam Turbines
Power generation technology selection is driven by factors such as cost, fuel supply security, and environmental impact. Coal remains a popular choice due to its global availability, but efficient, reliable, and cost-effective methods are essential. In Europe, efforts focus on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components, leading to a full demonstration plant. This systematic approach to materials development and proven design principles ensures operational reliability.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 101-124, October 11–14, 2016,
... code case is solution anneal 1100 °C min. followed by aging 4 h min at 760° 816 °C (most commonly 800 °C). This heat treatment will be referred to in this paper as the standard heat treatment . Water quenching after solution annealing is often used but not required. Hardness is typically RB 85-90...
Abstract
View Papertitled, Alloy 740H: Development of Fittings Capability for A-USC Applications
View
PDF
for content titled, Alloy 740H: Development of Fittings Capability for A-USC Applications
INCONEL alloy 740H has been specified for tube and pipe for the boiler and heat exchanger sections of AUSC and sCO 2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube sheets. The initial evaluation of alloy 740H properties, leading to ASME Code Case 2702, was done on relatively small cross-section tube and plate. The production of fittings involves the use of a wide variety of hot or cold forming operations. These components may have complex geometric shapes and varying wall thickness. The utility industry supply chain for fittings is largely unfamiliar with the processing of age-hardened nickel-base alloys. Special Metals has begun to address this capability gap by conducting a series of trials in collaboration with selected fittings manufacturers. This paper describes recent experiences in first article manufacture of several components. The resulting microstructure and properties are compared to the published data for tubular products. It is concluded that it will be possible to manufacture most fittings with properties meeting ASME Code minima using commercial manufacturing equipment and methods providing process procedures appropriate for this class of alloy are followed. INCONEL and 740H are registered trademarks of Special Metals Corporation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 803-811, October 21–24, 2019,
... by water quenching was carried out for the alloys processed at 900 C. For one example, the microstructure change of Ti10Al-2Nb is shown in Fig. 1 [6]. An equiaxed a phase of approximately 15 µm in grain size was observed by heat treatment at 800 and 900 C (Fig. 1 (a), (b The equiaxed a phase...
Abstract
View Papertitled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
View
PDF
for content titled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
Ti alloys are used as compressor blades and disks in jet engines due to their high specific strength and good oxidation resistance at operation temperature. However, Ti alloys cannot be used above 600 °C because creep properties and oxidation resistance deteriorate. To overcome the above problems, the effect of alloying element on oxidation resistance was investigated and it was found that Sn deteriorated oxidation resistance and Nb improved oxidation resistance. Then, we have attempted to design new Ti alloys without Sn, but including Nb because Nb improved oxidation resistance. To expect solid-solution hardening, Zr was also added to the alloys. In this study, the creep behavior of Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si alloys was investigated. The creep test was performed at temperature range between 550 and 650 °C and stress range between 137 and 240 MPa. The stress exponent and the activation energy for creep were analyzed using an Arrhenius equation. The stress exponent was 5.9 and 3.4, and the activation energy was 290 and 272 kJ/mol for Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si, respectively. This indicates the creep deformation mechanism is dislocation (high-temperature power law) creep governed by lattice diffusion.
Proceedings Papers
Effect of Dissolved Oxygen Level on Stress Corrosion Cracking Susceptibility of Structural Steels
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 948-952, October 21–24, 2019,
... [6, 7], is also added as a test material because its application in steam boilers would expose the steel to water with DO. As T23 and T24 were not susceptible to SCC in as-received conditions [2, 3], all steels were subjected to quenching before exposure to water with DO. This is to exemplify...
Abstract
View Papertitled, Effect of Dissolved Oxygen Level on Stress Corrosion Cracking Susceptibility of Structural Steels
View
PDF
for content titled, Effect of Dissolved Oxygen Level on Stress Corrosion Cracking Susceptibility of Structural Steels
Stress corrosion cracking (SCC) is a potential risk in structural steels used for steam boilers. To investigate the effect of dissolved oxygen (DO) on SCC susceptibility, three steels, T23, T24 and T91 were annealed at 1065°C and then quenched to create a susceptible microstructure and then exposed in a Jones test to stagnant and circulating water at 200°C with varying DO levels. The results indicated that among the tested steels, the SCC susceptibility was highest in T91 but lowest in T23 which did not exhibit crack initiation with 100 ppb DO. T24 showed no cracking with 50 ppb DO but cracked with 100 ppb DO under these conditions. Based on these results, the next planned step is to monitor crack growth in-situ and determine a critical DO content for each material.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 815-820, October 22–25, 2013,
... water quench. Grain size after the solution treatment is about 150 µm. The pre-aged sample was prepared by annealing the solution treated 815 steel at 1173 K for 864 ks (240 h) before water quench. Fe2Nb Laves phase was precipitated in the pre-aged sample. These steels were cut into 1.5 mm thickness...
Abstract
View Papertitled, Steam Oxidation of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
View
PDF
for content titled, Steam Oxidation of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution treated sample, depending on the grain of the steel. Although thin duplex scale with the Cr-rich layer was formed in the early stage, most of the surface was covered with thick duplex scale which consists of magnetite as the outer scale and the mixture of Fe-Cr spinel and metallic Ni as the inner scale. On the other hand, surface morphology of the oxide scale was independent of grain of the steel and thick duplex scale as seen on the solution treated sample was formed on the pre-aged sample. Steam oxidation resistance of the steel is almost the same as that of commercial austenitic steels and it can be improved by the surface treatment such as shot peening. Based on the results, this steel has both enough creep rupture strength and good steam oxidation resistance for A-USC power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 327-335, October 21–24, 2019,
... for the Fe-9Cr alloy and 1573 K for Fe-9Cr-2Nb alloy for 43.2 ks in vacuum followed by water quenching. The ingots were cut to be a thin coupon then experienced cold rolling with the rolling rate of 30%. Recrystallization was carried out at the same conditions as solution treatment. The Fe-9Cr-2Nb alloys...
Abstract
View Papertitled, The Effect of Niobium Addition on Steam Oxidation Behavior of Ferritic Heat Resistant Steels at 923 K
View
PDF
for content titled, The Effect of Niobium Addition on Steam Oxidation Behavior of Ferritic Heat Resistant Steels at 923 K
High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high mechanical properties such as solid solution strengthening and precipitation hardening. However, the knowledge of the correlation between Laves phase precipitation and oxidation behavior has not clarified yet on 9Cr ferritic steels. This research will be focused on the effect of precipitation of Laves phase on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide mainly consist of wüstite on the Fe-9Cr in the initial stage while on Nb added samples magnetite was dominated. The results show that the Fe-9Cr- 2Nb alloy has a slower oxidation rate than the Fe-9Cr alloy after oxidized for 172.8 ks
Proceedings Papers
Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 96-103, October 21–24, 2019,
... into square bars with 20-mm long sides and solution-treated for 0.5 h at 1473 K, followed by water quenching. The creep test specimens were round-bar test pieces with a gauge diameter of 6 mm and a gauge length of 30 mm. The creep tests were conducted at 923, 973, and 1023 K at 98 stresses ranging from 30...
Abstract
View Papertitled, Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
View
PDF
for content titled, Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
To save fossil fuel resources and to reduce CO 2 emissions, considerable effort has been directed toward researching and developing heat-resistant materials that can help in improving the energy efficiency of thermal power plants by increasing their operational temperature and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep tests for 15Cr-1Mo-6W-3Co-V-Nb steels with ferrite matrix strengthened by a mainly Laves phase (Fe 2 W) showed that the creep strengths of 15Cr ferritic steel at temperatures ranging from 923 K to 1023 K were twice as high as those of conventional 9Cr ferric heat-resistant steel. 15Cr steels have higher steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions, especially that of carbon, in order to improve the high-temperature creep strength.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, February 25–28, 2025,
... to machining, the GMA-DED builds were solution heat treated at 1038°C for one hour and water quenched. 1021 Table 1: Comparison of 316H DED test programs Program ID CSM Purdue EPRI DED Process Gas Metal Arc (CMT) Laser Powder Laser Powder Feedstock 316H Wire 316H Powder 316H Powder Scan Strategy Weave vs...
Abstract
View Papertitled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
View
PDF
for content titled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 143-154, October 22–25, 2013,
... and then a ramp up to 1150°C for 15 hrs followed by water quenching. After the solution treatment, a two-stage ageing treatment was applied which was the same as the standard Haynes precipitation treatment but with a longer holding time at 1010°C for 5 hrs followed by quenching, and then a second ageing treatment...
Abstract
View Papertitled, Microstructural Evolution in Cast Haynes 282 for Application in Advanced Power Plants
View
PDF
for content titled, Microstructural Evolution in Cast Haynes 282 for Application in Advanced Power Plants
A global movement is pushing for improved efficiency in power plants to reduce fossil fuel consumption and CO 2 emissions. While raising operating temperatures and pressures can enhance thermal efficiency, it necessitates materials with exceptional high-temperature performance. Currently, steels used in power plants operating up to 600°C achieve efficiencies of 38-40%. Advanced Ultra Supercritical (A-USC) designs aim for a significant leap, targeting steam temperatures of 700°C and pressures of 35 MPa with a lifespan exceeding 100,000 hours. Ni-based superalloys are leading candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates the microstructural evolution in large, sand-cast components of Haynes 282. Microstructure, referring to the arrangement of grains and phases within the material, significantly impacts its properties. The research examines the alloy in its as-cast condition and after various pre-service heat treatments, aiming to fully identify and quantify the microstructural changes. These findings are then compared with predictions from thermodynamic equilibrium calculations using a dedicated Ni alloy database. The research reveals that variations in heat treatment conditions can significantly affect the microstructure development in Haynes 282, potentially impacting its mechanical properties.
Proceedings Papers
Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 377-387, October 11–14, 2016,
... in Table 2. Table 1: Processing history of the various samples examined in this study. Heat ID Processing History HF8726C Vacuum Induction Melted ingot Extruded to a 150 mm OD x 19 mm thickness pipe at 5.3:1 forging ratio at 1200C Solution heat treated at 1200C for 1 hour, water quenched HF8726C, As above...
Abstract
View Papertitled, Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
View
PDF
for content titled, Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship between traditional melting and extrusion as compared to powder metallurgy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... (10.5m). Figure 8 shows a photograph of the as-extruded pipe. The pipe was solution annealed at 2050°F (1120°C) and water quenched, and then aged at 1472°F (800°C) for 5 hours and air cooled. Table 3 shows room-temperature tensile data for solution annealed and aged pipe. Elevated-temperature tensile...
Abstract
View Papertitled, Manufacturing Demonstration of Inconel Alloy 740H for A-USC Boilers
View
PDF
for content titled, Manufacturing Demonstration of Inconel Alloy 740H for A-USC Boilers
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 762-770, October 21–24, 2019,
... pieces and they were sealed in quartz tubes filled with Ar. Homogenization was conducted at 1400 °C, followed by water quenching for microstructural observations or air cooling for mechanical tests to avoid cracking during quenching. The microstructure was observed using a field emission scanning...
Abstract
View Papertitled, Microstructure and High-Temperature Strength in Cr-Si Binary Alloys
View
PDF
for content titled, Microstructure and High-Temperature Strength in Cr-Si Binary Alloys
Cr-based alloys have potential as heat-resistant materials due to the higher melting point and lower density of Cr. Although oxidation and nitridation at high temperatures are one of the drawbacks of Cr and Cr-based alloys, addition of Si has been reported to enhance the oxidation and nitridation resistance. This study focuses on the microstructure and mechanical properties in the Cr-Si binary alloys with the Cr ss + Cr 3 Si two-phase structure. The Cr-16at.%Si alloy showed an eutectic microstructure and hypoeutectic alloys with the lower Si composition exhibited a combination of the primary Cr ss and the Cr ss /Cr 3 Si eutectic microstructure. Compression tests at elevated temperatures were conducted for the hypoeutectic and the eutectic alloys in vacuum environment. Among the investigated alloys, the Cr-13at.%Si hypoeutectic alloy including the Cr 3 Si phase of about 40% was found to show the highest 0.2% proof stress of 526 MPa at 1000 °C. Its specific strength is 78.1 Nm/g which is roughly twice as high as that of Ni-based Mar-M247 alloy. It was also confirmed that the 0.2% proof stress at 1000 °C depends on not only the volume fraction of the Cr 3 Si phase, but also the morphology of the Cr ss + Cr 3 Si two-phase microstructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 603-613, October 21–24, 2019,
...) × 61mm (Thickness) × 760mm (Length)) and circumferential welding was performed with narrow gap hot wire switching TIG (HST) using MG 617 1.0mm) weld metal. The pipe was received in solution annealed followed by water quenching prior to welding and the weldment was subjected to a post weld heat treatment...
Abstract
View Papertitled, Creep Damage Evaluation for Welded Pipe of Ni Based Alloy HR6W Using Full Thickness Specimen
View
PDF
for content titled, Creep Damage Evaluation for Welded Pipe of Ni Based Alloy HR6W Using Full Thickness Specimen
This paper investigates creep rupture and damage behaviors of HR6W weldment using full thickness specimen cut from the circumferentially welded pipe. Creep tests were conducted at 750°C for durations up to 8,000 hours, and damage morphology of weldment during creep was characterized. The applicability of several nondestructive detection methods to the creep damage evaluation was discussed. It was found that full thickness specimen was broken at the base metal and main crack was inclined approximately at 45 degrees to the axial direction of the specimen. Times to creep rupture of full thickness specimen were comparable with those of the standard specimen. In addition, a small crack in base metal on the outer surface was first observed at life fraction of 35% by replication. PT can detect the crack in about half of the life. The crack whose length is longer than 3mm can be detected by UT in latter half of the life.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1018-1026, October 11–14, 2016,
... to a final plate thickness of 16 mm at the Institute of Metal Forming (IBF) at RWTH Aachen University, Germany. Five rolling pass schedules (marked by _1 , _2 , _3 , _4 and _5 featuring variations in temperature and deformation within the last rolling pass, followed by air cooling or water quenching...
Abstract
View Papertitled, Development Status of High Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, Development Status of High Performance Ferritic (HiperFer) Steels
High chromium HiperFer (High performance ferritic) materials present a promising concept for the development of high temperature creep and corrosion resistant steels. The institute for Microstructure and Properties of Materials (IEK-2) at Forschungszentrum Jülich GmbH, Germany develops high strength, Laves phase forming, fully ferritic steels which feature excellent resistance to steam oxidation and better creep life than state of the art 9-12 Cr steels. Mechanical strength properties of these steels depend not only on chemical composition, but can be adapted to various applications by specialized thermo(mechanical) treatment. The paper will outline the sensitivity of tensile, creep, stress relaxation and impact properties on processing and heat treatment. Furthermore an outlook on future development potentials will be derived.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
... kinetics. On the one hand, the very fast cooling through water quenching led to a higher degree of supersaturation of the alloying elements into the matrix. It is believed that do not form during cooling from the solution temperature as long as the cooling rate is high enough. This is evidenced...
Abstract
View Papertitled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
View
PDF
for content titled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, February 25–28, 2025,
... the alloys is listed in Table 1. The as-cast buttons were homogenized at 1250°C for 2 hours and water quenched. The homogenized samples were then aged at 700, 750, 800 and 850°C up to 400 hours. The aged samples were characterized using Vickers hardness, XRD, scanning (SEM), and transmission electron...
Abstract
View Papertitled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
View
PDF
for content titled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five alloy compositions with varying Mo/W and two alloys with high tungsten modified with the addition of Al or Ti were selected and prepared. The newly developed alloys were evaluated for their response to thermal aging in the temperature range of 700 to 850 °C and corrosion in the KCl-NaCl-MgCl 2 salt under suitable conditions. Thermally aged and post-corrosion test samples were characterized to ascertain phase transformations, microstructural changes and corrosion mechanisms. Al/Ti modified alloys showed significant change in hardness after 400 hours aging at 750°C, which was found to be due to the presence of fine γ’/γ” precipitates along with plate-shaped W/Mo-rich particles. These alloys show comparable molten salt corrosion resistance as commercial alloys at 750°C for 200-hour exposures. The good corrosion behavior of these alloys may be attributed to the formation of a protective multicomponent Al-or Ti-enriched oxide as well as the unique microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... to those in 347H-NB. The ingots were thermo-mechanically treated, including homogenization, hot-forging, and hot-rolling, to make plate samples with a thickness of ~10 mm. The rolled plates were annealed at 1100°C, followed by water quenching, which achieved a fully recrystallized, solution-annealed...
Abstract
View Papertitled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 183-194, February 25–28, 2025,
... The material used throughout this study was SA508 Grade 3 Class 1, a low alloy steel used for reactor pressure vessels. Mechanical properties were proven on material supplied by Special Flanges, Italy, forged to blocks. The material was hardened and tempered (Q&T at 920°C, water quench and tempered at 680°C...
Abstract
View Papertitled, Complex Linear Welding Development for Thick Section Electron Beam Welding for Pressure Vessel Applications
View
PDF
for content titled, Complex Linear Welding Development for Thick Section Electron Beam Welding for Pressure Vessel Applications
As part of a Department of Energy (DOE) funded program assessing advanced manufacturing techniques for Small Modular Reactor (SMR) applications, the Nuclear Advanced Manufacturing Research Centre (AMRC) and the Electric Power Research Institute (EPRI) have been developing Electron Beam Welding (EBW) parameters and procedures based upon SA508 Grade 3 Class 1 base material. The transition shell, a complex component connecting the lower assembly to the upper assembly is a shell that flares up with varying thicknesses across its section. The component due to its geometry could be built by near net shape powder metallurgy hot isostatic pressing instead of conventional forging techniques. The demonstrator transition shell here is built from several sub-forging as a training exercise. The complex geometry and joint configuration were selected to assess the EBW as a suitable technique. This paper presents results from the steady state welding in the 60-110 mm material thickness range, showing that weld properties meet specification requirements. Weld quality was assured by Time-of-Flight Diffraction (ToFD). The transition shell was completed by welding a flange to the assembly. The presented transition shell assembly represents 6 welded sections all fabricated in below 100 min total welding time.
1