Skip Nav Destination
Close Modal
Search Results for
wall temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 197 Search Results for
wall temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 632-643, October 11–14, 2016,
... tubing materials that do not require a PWHT in the high temperature sections of the AUSC boiler membrane walls. Composite bimetallic tubing with high strength cladding, applied by weld overlay or co-extrusion that may meet the requirement of high operating temperature and high overall strength...
Abstract
View Paper
PDF
High temperature regions in the upper sections of the advanced ultrasupercritical (AUSC) boilers are exposed to temperatures higher than traditional supercritical (SC) boilers and require high strength materials. Use of modified 9-12% Cr materials such as T91 and T92, while meeting the strength requirements, are still under research stage for large-scale fabrication of the membrane walls for several reasons, such as required post weld heat treatment PWHT (ASME Code) or hardness limits on as-welded structures (European codes). The main objective of this paper is to explore alternate tubing materials that do not require a PWHT in the high temperature sections of the AUSC boiler membrane walls. Composite bimetallic tubing with high strength cladding, applied by weld overlay or co-extrusion that may meet the requirement of high operating temperature and high overall strength, is addressed through an alternate design criterion. Bimetallic tubes can replace the single metal tubes made from 9-12% Cr materials. The bimetallic tube is assumed to be fabricated from Grade 23 steel (base tubes) with Alloy 617 overlaid. The alternate design method is based on an iterative analytical solution for the through-wall heat transfer and stresses in a composite tube with temperatures and strength variations of both the materials considered in detail. A number of different analyses were performed using the proposed analytical approach, methodology verified through benchmark solutions and then applied to the membrane wall configurations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 600-609, October 11–14, 2016,
... Abstract Through inner wall oxidation scale thickness measurement, sampling tests and installation of wall temperature measuring device in the boiler, the equivalent wall temperature and its distribution of secondary high temperature reheater tube were estimated and verified...
Abstract
View Paper
PDF
Through inner wall oxidation scale thickness measurement, sampling tests and installation of wall temperature measuring device in the boiler, the equivalent wall temperature and its distribution of secondary high temperature reheater tube were estimated and verified, and the temperature field distribution of tube platen which is of single peak distribution in the direction vertical to tube platen and an apparent lower temperature distribution covered by the smoke shield at the side of boiler wall were both obtained. For the middlemost 10CrMo910, the wall temperature of individual tube was getting close to 600°C. Afterwards material state and residual creep life of tube platen were estimated and calculated. The results of estimate and calculation show that the tube platen in the middle is not suitable for further service due to its degraded material states and lower antioxidant ability. Thus with consideration of distribution characteristics of temperature field, parts of tube platens in the middle are proposed to be replaced with T91 tubes. Furthermore, to avoid onsite heat treatment, 10CrMo910 tube covered by the smoke shield in the boiler was reserved, and a small piece of 10CrMo910 tube was welded at the inlet and outlet ends respectively in the manufactory.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam...
Abstract
View Paper
PDF
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
..., and water wall high temperature corrosion after low-nitrogen combustion retrofitting. boilers tubes combustion retrofitting fossil power units low-alloy steel steam side oxide scale exfoliation thick-wall components waterwall corrosion weld cracks Advances in Materials Technology for Fossil...
Abstract
View Paper
PDF
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1098-1112, October 11–14, 2016,
... Abstract Starting in 2010 a new generation of coal fired power plants in Europe operating at a steam temperature of up 620°C was commissioned. During that commissioning process many cracks occurred in welds of T24 material which was extensively used as membrane wall material in nearly all...
Abstract
View Paper
PDF
Starting in 2010 a new generation of coal fired power plants in Europe operating at a steam temperature of up 620°C was commissioned. During that commissioning process many cracks occurred in welds of T24 material which was extensively used as membrane wall material in nearly all of the new boilers. The cracks were caused by stress corrosion cracking (SCC) only occurring in the areas of the wall being in contact to high temperature water during operation. The question which step of the commissioning process really caused the cracking was not answered completely even several years after the damage occurred. To answer this question and to define parameters which will lead to cracking in high temperature water many tests were conducted. Generally it was found that slow tensile tests in controlled environment are well suited to get information about materials SCC sensitivity in the laboratory. In the present paper, first the influence of the cracking of welded T24 material in acidic environment containing well-defined amounts of H2S is investigated to address the question if a chemical cleaning process prior to the testing might lead to hydrogen induced SCC. As a second step, cracking behaviour in high temperature water is being investigated. Here the influence of the temperature, the oxygen concentration of the water, the deformation speed of the sample, the heat treatment and the condition of the material on the SCC is analysed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 270-283, October 15–18, 2024,
... superior high-temperature creep strength which can lead to overall reductions in material cost. A key challenge is understanding how autogenous seam welding with and without re-drawing can be used to manufacture thin-wall tubing for CSP receivers and heat-exchangers to further reduce costs over traditional...
Abstract
View Paper
PDF
To improve the economics of critical components, such as receivers and heat exchangers, for Generation 3 (Gen 3) concentrating solar power (CSP) plants, research was conducted to understand how manufacturing impacts the high-temperature performance of various tube production routes. Gen 3 CSP components are expected to require the use of heat-resistant nickel- based alloys due to the elevated operating temperatures in designs carrying molten salt or supercritical CO 2 . INCONEL alloy 740H (alloy 740H) was investigated as an alternative to UNS N06230 (alloy 230) as it possesses superior high-temperature creep strength which can lead to overall reductions in material cost. A key challenge is understanding how autogenous seam welding with and without re-drawing can be used to manufacture thin-wall tubing for CSP receivers and heat-exchangers to further reduce costs over traditional seamless production routes. Alloy 740H welded tube was successfully fabricated and re-drawn to several relevant tube sizes. Since traditional mechanical testing samples could not be removed from the thin-wall tubing, full-sized tubes were used for tensile, fatigue, and vessel testing (internally pressurized creep- rupture) which was critical to understanding the weld performance of the manufactured product forms. The generated vessel test data exhibited a creep strength reduction when compared to wrought product with no clear trend with temperature or test duration. It was found that redrawing the welded tubes improved the creep strength to approximately 82% of the wrought material performance and elevated temperature tensile and fatigue behavior exceeded 85% of the design minimums. Detailed, post-test characterization found that nano-sized carbides formed during the laser seam-welding process remained stable after multiple solution-annealing steps, which restricted grain growth, and impacted the time-dependent performance. This paper will focus on the time-dependent behavior of the examined welded and redrawn tubes, supporting metallographic evidence, and give perspective on future considerations for using alloy 740H in CSP components.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients. boilers environmental assisted cracking ferritic stainless steel heat affected zone microstructure oxygenated high-temperature water...
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should...
Abstract
View Paper
PDF
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, October 15–18, 2024,
... Abstract In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper...
Abstract
View Paper
PDF
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
... hardness martensitic stainless steel nondestructive evaluation post-weld heat treatment thick wall piping Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31339...
Abstract
View Paper
PDF
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1487-1499, October 21–24, 2019,
... of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component. A-USC coal power plants boilers material degradation steam temperature superheaters thermal efficiency turbine casing turbine rotors valves Joint EPRI...
Abstract
View Paper
PDF
CO 2 emission reduction from coal power plants is still a serious issue to mitigate the impact of global warming and resulting climate change, though renewables are growing today. As one of the solutions, we developed A-USC (Advanced Ultra Super Critical steam condition) technology to raise the thermal efficiency of coal power plants by using high steam temperatures of up to 700℃ between 2008 and 2017 with the support of METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). The temperature is 100℃ higher than that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1059-1070, October 22–25, 2013,
... space is populated by austenitic stainless steels such as 347HFG, Super 304H, and NF709 (which are currently only available in thinner-wall tubing), and solid-solution strengthened nickel-based superalloys such as 617, 625, and 230 which offer greater temperature capability but at a dramatically (>4x...
Abstract
View Paper
PDF
Ultrasupercritical (USC) steam boiler and heat recovery steam generator (HRSG) technology is constantly evolving to improve efficiency and reduce emissions. Currently, temperatures are pushing beyond the capabilities of even the most advanced ferritic steels with some applications requiring nickel-based superalloys. Cost-effective design of these systems requires the application of a variety of alloys representing a range of cost/property trade-offs. CF8C-Plus is a cast austenitic stainless steel recently developed for application in high temperatures similar to those in power plants (600 - 900 °C) with creep strength comparable to several superalloys. This makes it an attractive alternative for those expensive alloys. EPRI, with assistance from PCC subsidiaries Special Metals and Wyman Gordon Pipes and Fittings, has produced and characterized two pipe extrusions nominally 5.25 inch OD x 0.5 inch wall thickness and 6 inch OD x 0.75 inch wall (13.3 x 1.3 cm and 15.2 x 1.9 cm), each about 1000 lbs, to continue to assess the feasibility of using a wrought version of the alloy in power piping and tubing applications. The mechanical properties from these extrusions show performance in the same population as earlier forging trials demonstrating capability exceeding several austenitic stainless steels common to the industry. Creep-rupture performance in these extrusions continues to be competitive with nickel-based superalloys.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 165-176, October 25–28, 2004,
... Abstract The construction of highly efficient, coal-burning Ultra Supercritical (USC) boiler systems to operate with steam temperatures up to 760°C (1400°F) and with steam pressures up to 35 MPa (5000 psi) will require the use of advanced high temperature, high strength materials. As part...
Abstract
View Paper
PDF
The construction of highly efficient, coal-burning Ultra Supercritical (USC) boiler systems to operate with steam temperatures up to 760°C (1400°F) and with steam pressures up to 35 MPa (5000 psi) will require the use of advanced high temperature, high strength materials. As part of a 5-year project to develop boiler materials for advanced USC power plants, principally funded by the Department of Energy (U.S. DOE No. DE-FG26-01NT41175) and the Ohio Coal Development Office (OCDO No. D-00-20), six alloys have been selected for development and implementation in USC boiler systems. The selected alloys are Haynes 230 (produced by Haynes International), Inconel 740 (produced by Special Metals Corp.), CCA 617 (produced by Krupp VDM GMBH), HR6W, Super 304H, and SAVE 12 (all three produced by Sumitomo Metal Industries). In this project, one of the goals has been to establish boiler fabrication guidelines for the use of these alloys. The principal objectives have been 1) to understand the behavior of these materials when subjected to conventional boiler fabrication processes, 2) to determine the thermomechanical treatments or other actions necessary to restore material properties which might degrade due to fabrication operations, and 3) to investigate prototypical manufacturing operations for producing both thick wall components (such as headers) and thin wall components (such as superheaters) from the USC alloys. This paper discusses some of the characteristics of these alloys, describes the technical approach used to assess their fabricability, and presents some of the results that have thus far been generated in this task effort.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, October 15–18, 2024,
... Abstract This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure...
Abstract
View Paper
PDF
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 537-548, October 22–25, 2013,
... Reheat steam outlet temperature 8 B-MCR 603ºC 9 Economizer inlet temperature 293ºC Table 2: Water wall materials of 1000MW USC tower boiler Boiler No. number hopper 1 1-14 2 15-17 3 18-20 4 21-27 15CrMoG 38.1×7 15CrMoG 38.1×7 15CrMoG 38.1×7 15CrMoG 38.1×7 Upper spiral tube T23 38.1×6.78 12Cr1MoVG...
Abstract
View Paper
PDF
In this paper, the performance of T23 and 12Cr1MoVG water wall tubes as well as their welded joints in engineering applications is reported. It was found that the T23 water wall tube may have water leak problems during its operation. In order to make sure the safe operation, leakage reasons of T23 water wall tube were analyzed and improvement measures were taken. Recommendations on the choice of water wall material of 1000MW USC tower boiler are given.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 668-677, October 11–14, 2016,
... Abstract For safe operation of thick-walled components for Advanced Ultra Super Critical (A-USC) power plants, detailed knowledge of the creep crack initiation and growth behavior is essential. The high loading and high temperature conditions in an A-USC power plant require, in many cases...
Abstract
View Paper
PDF
For safe operation of thick-walled components for Advanced Ultra Super Critical (A-USC) power plants, detailed knowledge of the creep crack initiation and growth behavior is essential. The high loading and high temperature conditions in an A-USC power plant require, in many cases, the employment of nickel base super alloys. Unfortunately, both manufacturing and nondestructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel base super alloys are quite challenging. In this paper, one candidate material for such applications, Alloy C-263, was tested for creep and creep crack behavior at 700 °C. Objective of the study was to determine a critical flaw size. In order to establish this size, the duration to achieve the 1%-strain limit at a given load is compared with the time to grow the initial flaw for Δa = 0.5 mm when the component was loaded with the same given load. It will be shown that manufacturing parameters, e. g. heat treatment procedures, have a significant influence on the creep crack initiation and growth behavior and thus on component life. Decoration of grain boundaries with precipitates, for instance caused by the manufacturing process, can reduce the creep crack resistance and thus increase the risk for premature component failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 546-557, October 21–24, 2019,
... Abstract Detailed knowledge of the creep and creep crack behavior is essential for a safe operation of thick-walled components in thermal power plants. High mechanical loads and temperatures of more than 700 °C often require the application of nickel-based alloys, e.g. alloy C-263...
Abstract
View Paper
PDF
Detailed knowledge of the creep and creep crack behavior is essential for a safe operation of thick-walled components in thermal power plants. High mechanical loads and temperatures of more than 700 °C often require the application of nickel-based alloys, e.g. alloy C-263. Unfortunately, manufacturing and non-destructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel-based alloys are quite challenging. Tolerable critical flaw sizes, experimentally validated for long service durations, play an important role in the quality assurance of such components. It is commonly accepted that manufacturing parameters, e.g. heat treatment procedures, have a significant influence on creep ductility and time-dependent crack behavior. By means of adjusting the process parameters, the ductility and the creep life of notched specimen can be significantly improved in the case of alloy C-263. Essential root cause is the decoration of grain boundaries with carbides which drastically influences creep crack initiation and growth. This results in significant differences for allowable critical flaw sizes and thus, the potential use of the candidate material. On a first generation of alloy C-263 “G1”, a dense population of carbides on the grain boundaries was found, which resulted in an inadmissible creep crack behavior. The resulting critical flaw sizes were only a few tenths of a millimeter. On a second generation “G2”, the grain boundary occupation was positively influenced, so that a satisfactory creep crack behavior could be found. The critical flaw sizes are in the order of one millimeter or more. A critical or impermissible material behavior under creep conditions can be demonstrated by testing smooth and notched round specimens. For example, the first generation “G1” notched round specimens fails earlier than the smooth round specimens, indicating notch sensitivity. On the second generation “G2”, however, a notch insensitivity was found. The critical defect sizes can be determined by a method that takes into account a simultaneous examination of the crack tip situation and the ligament situation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... Abstract Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds...
Abstract
View Paper
PDF
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... Abstract In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC...
Abstract
View Paper
PDF
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... Differential thermal Analysis (SS DTA) to determine the phase transformation temperatures. Table 2. Welding Parameters Tube Wall Thickness Weld Pass Current (A) Voltage Min Max Average (V) KR1* KR2 100 120 110 10 - 11 KR3 96 104 100 10 - 11 0.331 in. KS1 162 162 162 10 - 11 KS2 132 145 138.5 10 - 11 KT1 KT2...
Abstract
View Paper
PDF
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
1