Skip Nav Destination
Close Modal
Search Results for
valves
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 90 Search Results for
valves
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 409-417, October 15–18, 2024,
... Abstract Main steam control valves are crucial components in power plants, as they are the final elements in the steam piping system before the steam enters the turbine. If any parts of these valves become damaged, they can severely harm the steam turbines. Recently, power plants have been...
Abstract
View Paper
PDF
Main steam control valves are crucial components in power plants, as they are the final elements in the steam piping system before the steam enters the turbine. If any parts of these valves become damaged, they can severely harm the steam turbines. Recently, power plants have been required to operate under cyclical loading, which increases the risk of cracks in the control valve seats. This is due to the different rates of expansion between the Stellite surface and the underlying Grade 91 steel surface when exposed to high temperatures. To ensure a reliable power supply, power plants cannot afford long downtimes, making on-site service essential. This paper presents an on-site technique for post-weld heat treatment (PWHT) of Stellite seats. By using a heating pad arrangement and an induction heater, the required PWHT temperature of 740°C, as specified in the welding specification procedure (WPS), can be achieved. This method allows for on-site valve seat repair and can be applied to other power plants as well.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 886-899, August 31–September 3, 2010,
... Abstract The pursuit of reduced emissions and increased efficiency in ultra-critical steam plants has led to the investigation of systems operating at temperatures up to 720°C and pressures up to 300 bars, necessitating the use of nickel-based alloys. This study focuses on control valves...
Abstract
View Paper
PDF
The pursuit of reduced emissions and increased efficiency in ultra-critical steam plants has led to the investigation of systems operating at temperatures up to 720°C and pressures up to 300 bars, necessitating the use of nickel-based alloys. This study focuses on control valves manufactured from Alloy 617, designed for steam temperatures of 725°C, examining specific challenges in their design and manufacture, including machining and welding processes. Initial operational experiences with the valve at 725°C are presented, along with ongoing tribological investigations of nickel-based alloys at 725°C, as standard material pairings with optimized wear behavior are unsuitable at such elevated temperatures. These investigations aim to develop material pairings that can maintain good wear behavior under these extreme conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 460-469, October 21–24, 2019,
... Abstract Materials are the key to develop advanced ultra-supercritical (A-USC) steam generators. Operating at temperature up to 760°C and sustained pressure up to 4500 psi. Pressure vessel and piping materials may fail due to creep, oxidation, and erosion. Valves are particularly subjected...
Abstract
View Paper
PDF
Materials are the key to develop advanced ultra-supercritical (A-USC) steam generators. Operating at temperature up to 760°C and sustained pressure up to 4500 psi. Pressure vessel and piping materials may fail due to creep, oxidation, and erosion. Valves are particularly subjected to loss of function and leakage due to impermeant of the sealing surfaces. New materials, less susceptible to the above damage modes are needed for A-USC technology. Two Ni-based superalloys have been identified as prime candidates for valves based materials. Hardfacing is applied to sealing surfaces to protect them from wear and to reduce friction. Stellite 6 (Cobalt-based alloy) is the benchmark hardfacing owing to its anti-galling properties. However, the latest results tend to indicate that it is not suitable for high pressure application above 700°C. An alternative hardfacing will be required for A-USC. New Ni- and Co- based alloys are being developed for applications where extreme wear is combined with high temperatures and corrosive media. Their chemistry accounts for the excellent dry-running properties of these alloys and makes them very suitable for use in adhesive (metal-to- metal) wear. These new alloys have better wear, erosion, and corrosion resistance than Stellite 6 in the temperature range 800°C ~ 1000°C. As such, they have the potential to operate in A-USC. Velan recently developed an instrumented high temperature tribometer in collaboration with Polytechnique Montreal to characterize new alloys including static and dynamic coefficients of friction up to 800°C. We present herein the methodology that has been devolved to explore the effects of elevated temperature on the tribological behavior of those advanced material systems, with the goal of capturing the basis for the specification, design, fabrication, operation, and maintenance of valves for A-USC steam power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 852-862, October 21–24, 2019,
... Abstract Steam turbine is one of the critical equipments in coal-fired power plants, steel P91 is a common material of its control valves. CoCr-based hardfacing on valve seats can resist long time exposure to water vapor with high temperature, thermal fatigue and solid particles erosion under...
Abstract
View Paper
PDF
Steam turbine is one of the critical equipments in coal-fired power plants, steel P91 is a common material of its control valves. CoCr-based hardfacing on valve seats can resist long time exposure to water vapor with high temperature, thermal fatigue and solid particles erosion under high pressure. However, these hardfacing can crack and disbond during operation, which generates high risks for turbine systems and power plants. This article discussed the failure reasons of CoCr-based hardfacing, and introduced a method and practical experience of on-site repairing steam turbine valve seats with laser cladding NiCr coating.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... Abstract Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low...
Abstract
View Paper
PDF
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 12-23, October 11–14, 2016,
... Abstract Since 2008, Japanese boiler, turbine and valve manufacturers, research institutes and utility companies have been working together to develop 700V A·USC technology, with support from the Japanese government. The key areas of discussion are technology development of high temperature...
Abstract
View Paper
PDF
Since 2008, Japanese boiler, turbine and valve manufacturers, research institutes and utility companies have been working together to develop 700V A·USC technology, with support from the Japanese government. The key areas of discussion are technology development of high temperature materials such as nickel-based alloys and advanced 9Cr steels, and their application to actual power plants. At the EPRI conference in 2013, our report mainly focused on the development of fundamental material and manufacturing technology during the first five years of the project, and the preparation status of the boiler component test and turbine rotor test for the latter four years of the project. The boiler component test, using a commercially-operating boiler, began in May 2015 and is scheduled to be finished by the end of 2016. The turbine rotor test at 700°C with actual speed will be carried out from September 2016 to March 2017. At this year’s conference, we will: l) briefly summarize the development of fundamental material and manufacturing technology and 2) provide an update on the progress of the boiler component test and the turbine rotor test.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1487-1499, October 21–24, 2019,
... that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested...
Abstract
View Paper
PDF
CO 2 emission reduction from coal power plants is still a serious issue to mitigate the impact of global warming and resulting climate change, though renewables are growing today. As one of the solutions, we developed A-USC (Advanced Ultra Super Critical steam condition) technology to raise the thermal efficiency of coal power plants by using high steam temperatures of up to 700℃ between 2008 and 2017 with the support of METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). The temperature is 100℃ higher than that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 393-407, August 31–September 3, 2010,
... stainless steel valve body was manufactured using the PM/HIP process. The valve body was characterized using shear-wave ultrasonic examination techniques to evaluate both detection and sizing characteristics of the PM/HIP produced component. Additionally, one of the flanges from the valve body was also...
Abstract
View Paper
PDF
The manufacture of large, complex components for ultra-supercritical and oxy-combustion applications will be extremely costly for industry over the next few decades as many of these components will be manufactured from expensive, high strength, nickel-based alloys casting and forgings. The current feasibility study investigates the use of an alternative manufacturing method, powder metallurgy and hot isostatic processing (PM/HIP), to produce high quality, and potentially less expensive components for power generation applications. Benefits of the process include manufacture of components to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 690-701, October 11–14, 2016,
... valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section...
Abstract
View Paper
PDF
The United States Department of Energy Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have led a U.S. consortium tasked with development of the materials technology necessary to build an advanced-ultra-Supercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). Part of this effort has focused on the need for higher temperature capable materials for steam turbine components, specifically cast nickel-base superalloys such as Haynes 282 alloy. As the size of the needed components is much larger than is capable of being produced by vacuum casting methods typically used for these alloys, an alternative casting process has been developed to produce the required component sizes in Haynes 282 alloy. The development effort has progressed from production of sub-scale sand castings to full size sand and centrifugal castings. The aim of this work was to characterize the microstructure and properties of a nickel alloy 282 casting with section size and casting weights consistent with a full sized component. A 2720 kg (6000 lbs.) nickel alloy 282 sand casting was produced and heat treated at MetalTek International. The casting was a half valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section thicknesses. Further analysis of the microstructure was carried out using light microscopy (LM), scanning electron microscopy (SEM), and X-ray spectroscopy (EDS). The paper also presents the mechanical properties obtained from the various sections of the large casting.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 24-40, October 22–25, 2013,
... be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have...
Abstract
View Paper
PDF
We have reported on the effort being done to develop the A-USC technology in Japan, which features the 700 deg-C steam condition, since the 2007 EPRI conference. Our 9 year project began in 2008. There have been some major changes in the electricity power market in the world recently. At first, the earthquake changed the power system violently in Japan. Almost all nuclear power plants have been shut down and natural gas, oil and coal power plants are working fully to satisfy the market's demands. In the USA, the so called ‘Shale gas revolution’ is going on. In Europe, they are working toward the target of reducing CO 2 emissions by the significant use of renewables with the backup of the fossil fuel power systems and enhancing power grids. A very rapid increase in power generation by coal is being observed in some countries. Despite some major changes in the electric sector in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have been done during the first half of the project term. Long term material tests such as creep rupture of base materials and welds will be conducted for 100,000hrs continuing after the end of the project with the joint effort of each participating company. Today, we are preparing the plan for the second half of the project, which is made up of boiler components test and the turbine rotating tests. Some boiler superheater panels, large diameter pipes and valves will be tested in a commercially operating boiler from 2015 to 2017. The turbine rotor materials which have the same diameter as commercial rotors will be tested at 700 deg-C and at actual speed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 429-440, October 15–18, 2024,
... the existing nickel components in the static section while applying thermal cycles in a different temperature range. HR6W pipes and valves were added to the bypass of the static section, and all components in the cyclic section were replaced with P92, P93, and HR6W components. The test loop achieved...
Abstract
View Paper
PDF
This paper reports on the latest in a series of projects aiming at the qualification of new and proven materials in components under a severe service environment. In the initial stages of the project (HWT I & HWT II), a test loop at Unit 6 of the GKM Power Plant in Mannheim was used to study the behavior of components for advanced ultra-supercritical (A-USC) plants made from nickel alloys at 725 °C under both static and fluctuating conditions. Due to recent changes in the operation modes of existing coal-fired power plants, the test loop was modified to continue operating the existing nickel components in the static section while applying thermal cycles in a different temperature range. HR6W pipes and valves were added to the bypass of the static section, and all components in the cyclic section were replaced with P92, P93, and HR6W components. The test loop achieved approximately 9000 hours of operation and around 800 cycles with holding times of 4 and 6 hours. After dismantling the loop, nondestructive and destructive examinations of selected components were conducted. The accompanying testing program includes results from thermal fatigue, fatigue, thermal shock, and long-term creep tests, focusing on the behavior of base materials and welds, particularly for HR6W, P92, P93, and other nickel-based alloys. Additionally, test results on dissimilar welds between martensitic steel P92 and nickel alloys A617 and HR6W are presented. Numerical assessments using standardized and numerical lifetime estimation methods complement the investigations. This paper provides insights into the test loop design and operational challenges, material behavior, and lifetime, including advanced numerical simulations and operational experiences with valves, armatures, piping, and welds.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1114-1125, October 15–18, 2024,
... Abstract High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up...
Abstract
View Paper
PDF
High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up welding, usually in several layers. The valve materials are generally heat-resistant steels such as 10CrMo9-10 (1.7380), X20CrMoV1 (1.4922), or Grade 91 / Grade 92 (1.4903 / 1.4901). In recent years, cracks or delaminations have frequently occurred within the hardfaced layer. The influence of cycling operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination behavior and to understand the involved damage mechanisms. Thermostatic and cyclic exposure tests have shown that cracking is favored by the formation of brittle phases due to iron dilution from the substrate material during the manufacturing process. Recommendations for the welding process of hardfaced sealing surfaces of fittings were derived from the investigation results.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 51-67, October 25–28, 2004,
... / 625°C 23 24 25 26 27 LMP = T(C+log(t1000 28 Figure 5. Creep rupture of promising forged and cast compositions 1000 Creep Strength Pilot Valve CB2P vs. Trial Melt CB2 100 10 22 Mean CB2 CB2 Trial Melt Valve CB2P / Pos.A Valve CB2P / Pos.B Valve CB2P / Pos.C open symbols = ongoing tests 100'000h / 600°C...
Abstract
View Paper
PDF
Power generation technology selection is driven by factors such as cost, fuel supply security, and environmental impact. Coal remains a popular choice due to its global availability, but efficient, reliable, and cost-effective methods are essential. In Europe, efforts focus on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components, leading to a full demonstration plant. This systematic approach to materials development and proven design principles ensures operational reliability.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
... superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy...
Abstract
View Paper
PDF
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 101-124, October 11–14, 2016,
... and pipe for the boiler and heat exchanger sections of AUSC and sCO2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube...
Abstract
View Paper
PDF
INCONEL alloy 740H has been specified for tube and pipe for the boiler and heat exchanger sections of AUSC and sCO 2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube sheets. The initial evaluation of alloy 740H properties, leading to ASME Code Case 2702, was done on relatively small cross-section tube and plate. The production of fittings involves the use of a wide variety of hot or cold forming operations. These components may have complex geometric shapes and varying wall thickness. The utility industry supply chain for fittings is largely unfamiliar with the processing of age-hardened nickel-base alloys. Special Metals has begun to address this capability gap by conducting a series of trials in collaboration with selected fittings manufacturers. This paper describes recent experiences in first article manufacture of several components. The resulting microstructure and properties are compared to the published data for tubular products. It is concluded that it will be possible to manufacture most fittings with properties meeting ASME Code minima using commercial manufacturing equipment and methods providing process procedures appropriate for this class of alloy are followed. INCONEL and 740H are registered trademarks of Special Metals Corporation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 912-923, October 11–14, 2016,
... candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications...
Abstract
View Paper
PDF
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 951-961, October 11–14, 2016,
... steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed...
Abstract
View Paper
PDF
As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
... Abstract CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions...
Abstract
View Paper
PDF
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
.... Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800...
Abstract
View Paper
PDF
Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC ComTest) to help achieve technical readiness to allow the construction of a commercial scale A-USC demonstration power plant. Among the goals of the ComTest project are to validate that components made from the advanced alloys can be designed and fabricated to perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for key A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. This project is intended to bring A-USC technology to the commercial scale demonstration level of readiness by completing the manufacturing R&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar (3500 psia).The A-USC ComTest project scope includes fabrication of full scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office under a prime contract with the Energy Industries of Ohio, with co-funding from the power industry participants, General Electric, and the Electric Power Research Institute, has completed the detailed engineering phase of the A-USC ComTest project, and is currently engaged in the procurement and fabrication phase of the work. This paper will outline the motivation for the effort, summarize work completed to date, and detail future plans for the remainder of the A-USC ComTest project.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... Abstract Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate...
Abstract
View Paper
PDF
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
1