Skip Nav Destination
Close Modal
Search Results for
vacuum arc remelting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-19 of 19 Search Results for
vacuum arc remelting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
...-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor...
Abstract
View Paper
PDF
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 644-655, October 11–14, 2016,
... vacuum arc remelting vacuum induction melting Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p0644 Copyright © 2016 ASM International®. All rights...
Abstract
View Paper
PDF
The US Advanced Ultra-Supercritical (A-USC) Consortium conducted an extensive program to evaluate available superalloys for use in rotors for steam turbines operating at a nominal temperature of 760 °C (1400 °F). Alloys such as 282, Waspaloy, 740H, 720Li, and 105 were tested in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team was established consisting of GE Power (project management and testing), Wyman-Gordon (forging and testing) and Special Metals (melting and billetizing) to pursue the work. A research license to melt the alloy was obtained from Haynes International. The first step of the development was to devise a triple melt (VIM-ESR-VAR) practice to produce 610 mm (24 inch) diameter ingot. Two ingots were made, the first to define the VAR remelting parameters and the second to make the test ingot utilizing optimum conditions. Careful attention was paid to ingot structure to ensure that no solidification segregation occurred. A unique homogenization practice for the alloy was developed by the US Department of Energy (DOE) and National Energy Technology Laboratory (NETL). Billetization was performed on an open die press with three upset and draw stages. This procedure produced an average grain size of ASTM 3. A closed die forging practice was developed based on compressive flow stress data developed by Wyman Gordon Houston for the consortium project. Multiple 18 kg forgings were produced to define the forging parameters that yielded the desired microstructure. The project culminated with a 2.19 metric ton (4830 lb), 1.22 m (48 inch) diameter crack-free pancake forging produced on Wyman Gordon’s 50,000 ton press in Grafton, MA. The forging process produced a disk with an average grain size of ASTM 8 or finer. Forging cut-up, microstructural characterization, and mechanical property testing was performed by GE Power. Fatigue and fracture toughness values of the disk forging exceeded those previously reported for commercially available rolled bar.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... by vacuum arc 1182 remelting (VAR) or by electroslag remelting (ESR). To achieve highest possible metallurgical cleanliness and homogeneity of the material also a double remelting by ESR+VAR is performed. For the manufacture of large steam turbine rotor parts Saarschmiede usually uses the double melting...
Abstract
View Paper
PDF
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 656-667, October 11–14, 2016,
...) and vacuum-arc-remelting (VAR), Fig. 8. Five vacuum induction furnace melts were needed in order to produce the ESR ingot as an intermediate stage. After 662 this, the final VAR re-melting was performed for an ingot with a weight of 23 tons. The achieved melt analysis is given in Table 4. All values are well...
Abstract
View Paper
PDF
COST FB2 steel alloyed with boron is currently the best available martensitic 9% Cr steel for turbine shafts subjected to steam temperatures up to 620°C and meanwhile introduced into production for application in commercial power plants. Currently several development programs are running to develop materials for further increase of application temperature up to 650°C. For realization of a 650ºC power plant not only creep strength, but also resistance against steam oxidation must be improved by increase of Cr content up to 11-12%. In the past all attempts to develop stable creep resistant martensitic 11-12% Cr steels for 650°C failed due to breakdown in long-term creep strength. Therefore new alloy concepts have been developed by replacing the fine nitride strengthening particles by controlled and accelerated precipitation of the more stable Z phase. Therefore the European project “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed the temperature limit of 650°C, only nickel base alloys can be used. One of the most promising candidate alloys for rotor forgings subjected to steam temperatures of 700°C is Alloy 617, which was already intensively investigated. For still higher temperatures in the range of 750°C only γ‘-precipitation hardened nickel base alloys, such as Alloy 263, can be applied. Therefore the “NextGenPower” project was launched and aimed at manufacture and demonstration of parts from Ni-based alloys for application in steam power plants at 750°C. One of the main goals was to develop turbine rotor materials and to demonstrate manufacturability of forgings for full scale turbine rotor parts. Contributing to this project, Saarschmiede has produced for the first time a large rotor forging in the Ni base Alloy 263. Numeric simulations of ingot manufacture, forging and heat treatment have been performed and a large trial rotor forging in Alloy 263 with a diameter of 1000 mm was successfully produced from a triple melt ingot. Experiences in manufacture and test results are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 448-458, October 22–25, 2013,
... (core) With regards to ingot segregation, which is a well known risk in larger ingots, Saarschmiede chose the triple melt process for producing the ingot. This comprises primary melting in the VIM furnace followed by ESR and finally remelting in the vacuum arc remelting furnace (VAR). One...
Abstract
View Paper
PDF
The European Cost programmes have led to the development of improved creep resistant 9%-Cr-steels alloyed with boron, which are designed for turbine shafts subjected to steam temperatures up to 620°C. The production of forgings in steel Cost FB2 for application in power plants has commenced. Production experience and results are presented in the paper. Beyond that, Saarschmiede participates in projects targeting at steam temperatures above 700°C. In the frame of a Japanese development programme the worldwide largest trial shaft in a modified Alloy 617 Ni-Base material has been manufactured successfully from a 31 t- ESR ingot. Manufacturing route and results are presented. Contributing to the European NextGenPower project Saarschmiede has started activities to produce a large rotor forging in Alloy 263. Simulations of main manufacturing steps have been performed and a large trial forging has been produced from a triple melt ingot. First results are presented.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 872-885, August 31–September 3, 2010,
... processes such as electro-slag remelting (ESR), vacuum induction melting (VIM) or vacuum arc remelting (VAR). Production of large steam turbine casings requires the use of air casting processes. When cast in air, the aluminum in these alloys oxidizes, which removes aluminum from the melt, causing porosity...
Abstract
View Paper
PDF
As conventional coal-fired power plants seek to reduce greenhouse gas emissions by increasing efficiency, the temperature limitations of traditional ferritic/martensitic steels used in high-temperature components present a significant challenge. With Advanced Ultra Supercritical (A-USC) power plants proposing steam temperatures of 760°C, attention has turned to nickel-based superalloys as potential replacements, since ferritic/martensitic steels cannot withstand such extreme conditions. However, the current absence of cast nickel-based superalloys combining high strength, creep-resistance, and weldability has led to the development of cast analogs of wrought nickel-based superalloys, including H263, H282, and N105. This paper examines the alloy design criteria, processing experiences, as-processed and heat-treated microstructures, and selected mechanical properties of these materials while also discussing their potential for full-scale development.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 750-761, October 21–24, 2019,
..., the A286 is mainly used in discs, spacers, expander wheels, blades and bolts though there are some rotors made out of A286 as well. Initial melting is conducted either using Air Arc Melting (AAM) or Vacuum Induction Melting (VIM). Secondary melting can be done using either Elecroslag Remelting (ESR...
Abstract
View Paper
PDF
The A286 is one of the earliest superalloys developed. It has been used for manufacturing different components of turbo machineries because of its balanced high temperature properties. These components include shafts, discs, spacers, blades and fasteners. This paper reviews some of the issues and recent field experiences related to metallurgy, fabrication, in-service evaluation and failure of some of these components. The fabrication aspects including the effects of alloy melting processes, forging parameters and different types of heat treatments on the processed parts are discussed. The importance of these factors on the microstructure and properties of A286 are highlighted. The effects of service exposure on some of these parts are also discussed. In service evaluation involves checking for service induced damage or changes in microstructures and properties so that the suitability of the part for continued service can be determined. The failure analysis section of the paper briefly discusses failures of two expander wheels and an expander disc made out of A286 to pinpoint some of the salient features of damage accumulation and fracture during service.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1268-1282, October 22–25, 2013,
... and double VAR (Vacuum Arc Remelting) remelted by Foroni Metals, has been forged by Società delle Fucine using a 12.600 ton press, following a procedure designed by model simulations in order to promote recrystallisation. Figure 1 shows the billet before during the forging steps and the prototype forged disk...
Abstract
View Paper
PDF
Alloy 718, widely used for its high-temperature performance in various applications, is being investigated for use in advanced power plants. Driven by the need for efficiency improvements, these plants demand higher temperatures and pressures, putting significant stress on critical components like boiler tubes and turbines. With existing steels and alloys struggling at such high temperatures, researchers are exploring alternatives. New generation plants target steam turbine inlet temperatures of 720°C and pressures of 350MPa, necessitating superalloys for high- and intermediate-pressure rotor sections. The Thermie Advanced project explored the potential of 718 for these applications. A trial rotor disk, forged using advanced processes, underwent a novel heat treatment to enhance microstructural stability and improve creep behavior. Ongoing creep tests exceeding 100,000 hours suggest a potential 50°C increase in the operational limit compared to standard 718. This 12-year research effort holds promise for utilizing 718 in forged components of advanced ultra-supercritical power plant steam turbines, potentially operating up to 700°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 131-136, October 11–14, 2016,
... Electro-Slag-Remelting ESR (Alloy 617B) or via Vacuum-Arc-Remelting VAR (Alloy C-263) to further increase the purity of the alloys. Subsequent forging of the ingots was done in a 40/45 MN open-die forging press to produce starting materials with recrystallized microstructure for the subsequent production...
Abstract
View Paper
PDF
Nickel-based Alloy 617B (DIN 2.4673) and Alloy C-263 (DIN 2.4650) with high creep strength and good fabricability are promising material candidates for the design of next generation coal-fired “Advanced Ultra-Super-Critical A-USC” power plants with advanced steam properties and thus higher requirements on the material properties. Microstructural studies of the precipitation hardened alloy C-263 were performed with Electron Microscopy (TEM) with respect to their strengthening precipitates like carbides and intermetallic gamma prime. Specimens were subjected to different ageing treatments at elevated temperatures for different times. The microstructural results of the investigated nickel alloy C-263 are presented and discussed with respect to their correlation with required properties for A-USC, e.g. the mechanical properties, the creep resistance and the high temperature stability and compared to Alloy 617B. The manufacturing procedure for the prematernal and forgings as well as for thin walled tube components for A-USC power plants is presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
... of failure, macroscopic fracture mode is correlated with microscopic damage mechanisms. EXPERIMENTAL Material 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy was manufactured at industrial scale through vacuum induction melting followed by consumable electrode vacuum arc remelting. Composition of product sample...
Abstract
View Paper
PDF
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 668-677, October 11–14, 2016,
... internal pressure load t CREEP AND CREEP CRACK BEHAVIOR ON ALLOY C-263 "G2" The experience and conclusions from investigation on Alloy C-263 G1 were utilized in manufacturing of the second generation of thick-walled Alloy C-263 (designated as G2 ) components. For this generation vacuum arc remelting...
Abstract
View Paper
PDF
For safe operation of thick-walled components for Advanced Ultra Super Critical (A-USC) power plants, detailed knowledge of the creep crack initiation and growth behavior is essential. The high loading and high temperature conditions in an A-USC power plant require, in many cases, the employment of nickel base super alloys. Unfortunately, both manufacturing and nondestructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel base super alloys are quite challenging. In this paper, one candidate material for such applications, Alloy C-263, was tested for creep and creep crack behavior at 700 °C. Objective of the study was to determine a critical flaw size. In order to establish this size, the duration to achieve the 1%-strain limit at a given load is compared with the time to grow the initial flaw for Δa = 0.5 mm when the component was loaded with the same given load. It will be shown that manufacturing parameters, e. g. heat treatment procedures, have a significant influence on the creep crack initiation and growth behavior and thus on component life. Decoration of grain boundaries with precipitates, for instance caused by the manufacturing process, can reduce the creep crack resistance and thus increase the risk for premature component failure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, October 15–18, 2024,
... welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed...
Abstract
View Paper
PDF
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 546-557, October 21–24, 2019,
... to make the use for thick-walled components possible. The chemical composition stayed within the nominal range for alloy C-263. The melting was carried out by means of vacuum arc remelting (VAR). Again, the heat treatments consisted of solution annealing followed by hardening. Also in the case...
Abstract
View Paper
PDF
Detailed knowledge of the creep and creep crack behavior is essential for a safe operation of thick-walled components in thermal power plants. High mechanical loads and temperatures of more than 700 °C often require the application of nickel-based alloys, e.g. alloy C-263. Unfortunately, manufacturing and non-destructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel-based alloys are quite challenging. Tolerable critical flaw sizes, experimentally validated for long service durations, play an important role in the quality assurance of such components. It is commonly accepted that manufacturing parameters, e.g. heat treatment procedures, have a significant influence on creep ductility and time-dependent crack behavior. By means of adjusting the process parameters, the ductility and the creep life of notched specimen can be significantly improved in the case of alloy C-263. Essential root cause is the decoration of grain boundaries with carbides which drastically influences creep crack initiation and growth. This results in significant differences for allowable critical flaw sizes and thus, the potential use of the candidate material. On a first generation of alloy C-263 “G1”, a dense population of carbides on the grain boundaries was found, which resulted in an inadmissible creep crack behavior. The resulting critical flaw sizes were only a few tenths of a millimeter. On a second generation “G2”, the grain boundary occupation was positively influenced, so that a satisfactory creep crack behavior could be found. The critical flaw sizes are in the order of one millimeter or more. A critical or impermissible material behavior under creep conditions can be demonstrated by testing smooth and notched round specimens. For example, the first generation “G1” notched round specimens fails earlier than the smooth round specimens, indicating notch sensitivity. On the second generation “G2”, however, a notch insensitivity was found. The critical defect sizes can be determined by a method that takes into account a simultaneous examination of the crack tip situation and the ligament situation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 678-689, October 11–14, 2016,
... (Vacuum Induction Melting) and ESR (Electro-Slag Remelting) were selected for melting process. The solution treatment was conducted at 980 for 3 hours, followed by aging heat treatment at 720 for 16 hours. The microstructure observations were conducted by optical microscopy and TEM (transmission...
Abstract
View Paper
PDF
Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher creep rupture strength and better oxidation resistance than conventional high Cr ferritic steels and austenitic steels. The 2 ton ESR ingot was forged or hot rolled without defects, and the blade trial manufacturing was successfully done. This alloy is one of the best candidates for USC and A-USC turbine components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 135-146, October 15–18, 2024,
... concentrations (nominally 1, 5, 10, 20 and 30 wppm) and casting the material using Vacuum Arc Remelting (VAR). The input material was sourced with low Co to minimize Co-60 generation and associated high dose rates during subsequent work with the irradiated material. Following preparation of the doped bar stock...
Abstract
View Paper
PDF
As many nuclear power plants are in the license renewal operating period and some are entering subsequent license renewal, there is increased probability that repairs will be needed on components that have been exposed to significant neutron fluence. The neutron-driven transmutation of nickel and tramp boron in austenitic materials commonly used in reactor internals can lead to the generation of trapped helium and the associated risk of helium-induced cracking (HeIC) during weld repairs. In the weld heat affected zone, where temperatures are insufficient to allow the helium to diffuse out of the material, the helium can remain trapped. Upon cooling, the residual stresses, combined with weakened grain boundaries due to helium coalescence, can lead to cracking. The current ASME limit for helium content for Code repairs is 0.1 appm. Prior work has demonstrated a strong inverse correlation between helium content and permissible weld heat input for avoidance of HelC. The helium concentration in the material to be repaired is thus a critical input to the development of weld repair processes to be applied to these materials. The reliable measurement of helium in irradiated materials at concentrations relevant for the evaluation of HeIC risk is a specialized process. It is important to demonstrate that the capability is available and can be practically leveraged to support emergent repairs. This paper presents on the execution and results of a multi-laboratory test program aimed at demonstrating the industry capability of acquiring accurate, repeatable, and timely measurements of relatively low concentrations of helium (< ~20 appm) within austenitic materials commonly used in reactor internals. Participating laboratories were supplied with equivalent specimens extracted from boron-doped coupons that were irradiated to drive the boron-to-helium transmutation reaction. The results and lessons learned from the program are expected to support the development of industry guidance for the acquisition of similar measurements supporting nuclear component repairs.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 778-789, October 11–14, 2016,
... components for the power generation industry, e.g. discs, centre shafts, turbine shafts, shaft components and accessories for gas and steam turbines. A complete range of special steelmaking equipment, a special melting shop with vacuum and remelting facilities, a 52 MN hydraulic forging press and the R&D...
Abstract
View Paper
PDF
Sufficient energy availability in combination with lowest environmental pollution is a basic necessity for a high living standard in each country. To guarantee power supply for future generations, improved technologies to achieve higher efficiency combined with reduced environmental impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components for the power generation industry. This paper reports about experiences in the fabrication of forged components for steam turbines for ultra-supercritical application - from basic properties up to ultrasonic detectability results. The materials used so far are the highly creep-resistant martensitic 9-10% Cr steel class for operating temperatures up to 625°C developed in the frame of the European Cost research program. Additionally our research activities on the latest generation of high temperature resistant steels for operating temperatures up to 650 degree Celsius – the boron containing 9% Cr martensitic steels (MARBN) - are discussed. In order to improve the creep behavior, MARBN steels with different heat treatments and microstructures were investigated using optical microscopy, SEM and EBSD. Furthermore, short term creep rupture tests at 650 degree Celsius were performed, followed by systematic microstructural investigations. As a result it can be concluded, that advanced microstructures can increase the time to rupture of the selected MARBN steels by more than 10 percent.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 213-223, October 11–14, 2016,
... (99.9 pct.) melted in a MRF ABJ-900 (MRF Inc., Suncook, NH, USA) arc melter under an argon atmosphere. Prior to the melting of each of the alloys, the arc melter chamber was purged under vacuum to a pressure of 10-3 mbar and backfilled with high purity argon (99.998 pct The process was repeated three...
Abstract
View Paper
PDF
Modern polycrystalline Ni-base superalloys for advanced gas turbine engines have been a key component that has contributed to technological advances in propulsion and power generation. As advanced turbine engine designs are beginning to necessitate the use of materials with temperature and strength capabilities beyond those exhibited by existing materials, new alloying concepts are required to replace conventional Ni-base superalloys with conventional γ-γ’ microstructures. The phase stability of various high Nb content Ni-base superalloys exhibiting γ-γ’-δ -η microstructures have been the subject of a number of recent investigations due to their promising physical and mechanical properties at elevated temperatures. Although high overall alloying levels of Nb, Ta and Ti are desirable for promoting high temperature strength in γ-γ’ Ni-base superalloys, excessive levels of these elements induce the formation of δ and η phases. The morphology, formation, and composition of precipitate phases in a number of experimental alloys spanning a broad range of compositions were explored to devise compositional relationships that can be used to predict the microstructural phase stability and facilitate the design of Ni-base superalloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
...-fired heater that could benefit from a welded tubular product [13]. MANUFACTURE OF MATERIALS The melting and hot working of alloy 740H has been described previously [11,12]. Since slab ingots are needed to make sheet product, a Vacuum Induction (VIM)/Electro-slag (ESR) melt/remelt process was used...
Abstract
View Paper
PDF
Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution-strengthened alloys if thinner tube wall can be specified. To date, the only age-hardened alloy that has been approved for service in the time dependent temperature regime in the ASME Boiler and Pressure Vessel Code is INCONEL alloy 740H. Extensive evaluation of seamless tube, pipe, and forged fittings in welded construction, including implant test loops and pilot plants, has shown the alloy to be fit for service in the 650-800°C (1202-1472°F) temperature range. Since, nickel-base alloys are much more expensive than steel, manufacturing methods that reduce the cost of material for advanced power plants are of great interest. One process that has been extensively used for stainless steels and solution-strengthened nickel-base alloys is continuous seam welding. This process has rarely been applied to age-hardened alloys and never for use as tube in the creep-limited temperature regime. This paper presents the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 74-85, October 22–25, 2013,
...) and Vacuum Arc Re-melting (VAR) to remove impurities and to reduce inclusions. Computer simulations (MeltFlow, see e.g. [16]) of the re-melting processes were performed in order to optimize re-melting parameters and therefore to avoid or suppress segregations. The forging process consists of upsetting...
Abstract
View Paper
PDF
The EU NextGenPower-project aims at demonstrating Ni-alloys and coatings for application in high-efficiency power plants. Fireside corrosion lab and plants trials show that A263 and A617 perform similar while A740H outperforms them. Lab tests showed promising results for NiCr, Diamalloy3006 and SHS9172 coatings. Probe trials in six plants are ongoing. A617, A740H and A263 performed equally in steamside oxidation lab test ≤750°C while A617 and A740H outperformed A263 at 800°C; high pressure tests are planned. Slow strain rate testing confirmed relaxation cracking of A263. A creep-fatigue interaction test program for A263 includes LCF tests. Negative creep of A263 is researched with gleeble tests. A263 Ø80 - 500mm trial rotors are forged with optimized composition. Studies for designing and optimizing the forging process were done. Segregation free Ø300 and 1,000mm rotors have been forged. A263 – A263 and A293 – COST F rotor welding show promising results (A263 in precipitation hardened condition). Cast step blocks of A282, A263 and A740H showed volumetric cracking after heat treatment. New ‘as cast’ blocks of optimized composition are without cracks. A 750°C steam cycle has been designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled.