Skip Nav Destination
Close Modal
Search Results for
transmission electron microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 119
Search Results for transmission electron microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1299-1312, October 25–28, 2004,
... Abstract The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study...
Abstract
View Papertitled, <span class="search-highlight">Transmission</span> <span class="search-highlight">Electron</span> <span class="search-highlight">Microscopy</span> and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
View
PDF
for content titled, <span class="search-highlight">Transmission</span> <span class="search-highlight">Electron</span> <span class="search-highlight">Microscopy</span> and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study was to show the boron distribution and identify the influence of boron on precipitation processes taking place in both steels during long-term creep exposure. The incorporation of boron into the M 23 C 6 precipitates in both steels was demonstrated. In P92 steel (30 ppm B), boron was distributed preferentially on prior austenite grain boundaries and hardly visible on the sub-grain boundaries. In the steel B2 doped with 100 ppm B, boron was densely distributed on prior austenite grain- and sub-grain boundaries as well as within martensite laths. Quantitative TEM metallography and boron trace autoradiography investigation showed that boron retarded the growth of M 23 C 6 by forming borocarbides M 23 (C, B) 6 , thereby significantly improving the creep rupture strength of boron doped 9% chromium steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
..., Private Bag 3, Johannesburg, South Africa Marthinus Bezuidenhout2, Thobeka Pete2 ESKOM, Research Testing and Development (RT&D), Johannesburg, 1401, South Africa Johan Westraadt3, Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Port Elizabeth, South Africa Bernard...
Abstract
View Papertitled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
View
PDF
for content titled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1163-1172, October 22–25, 2013,
... and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using...
Abstract
View Papertitled, Modelling and Optimizing Precipitation in Creep Resistant Austenitic Steel 25Cr-20Ni-Nb-N
View
PDF
for content titled, Modelling and Optimizing Precipitation in Creep Resistant Austenitic Steel 25Cr-20Ni-Nb-N
25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM investigations of aged specimens revealed the presence of six different precipitates: M 23 C 6 , Cr 2 N, sigma, Z-phase, eta-phase (Cr 3 Ni 2 Si(C,N)) and Nb(C,N). These precipitates were predicted and confirmed by MatCalc simulations. The calculated phase fraction and mean radius show good agreement with experimental data. Finally, simulations of different Cr-, C- and N-content in Tp310HCbN were performed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 303-319, October 3–5, 2007,
... testing at room temperature and 600°C (1120°F), and detailed macro- and microstructural examinations. Furthermore, the investigation included a comprehensive microstructural stability assessment using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM...
Abstract
View Papertitled, Microstructure and Mechanical Properties Characteristics of Welded Joints Made of Creep-Resistant Steel with 12% Cr, Vanadium, Tungsten, and Cobalt Additions
View
PDF
for content titled, Microstructure and Mechanical Properties Characteristics of Welded Joints Made of Creep-Resistant Steel with 12% Cr, Vanadium, Tungsten, and Cobalt Additions
This paper presents comprehensive test results of thick-walled VM12 steel pipes containing 12% chromium, vanadium, and tungsten, with cobalt addition. The primary objective was to verify welding technologies for boiler superheater thick-walled components and characterize the strength, technological properties, and microstructure of welded joints produced at RAFAKO S.A. The extensive research program encompassed a broad range of tests on both parent material and welded joints, including mechanical property assessments at room temperature, creep resistance evaluations, low-cycle fatigue testing at room temperature and 600°C (1120°F), and detailed macro- and microstructural examinations. Furthermore, the investigation included a comprehensive microstructural stability assessment using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), conducted after fatigue resistance testing at room and elevated temperatures, following additional annealing at 700°C (1,920°F), and after 1,000 hours of exposure for both parent material and welded joints. These investigations were conducted as part of the COST 536 Action, representing a collaborative effort to understand and characterize high-temperature creep-resistant steels like VM12 for advanced power generation applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 787-799, August 31–September 3, 2010,
... and transmission electron microscopy. The findings are discussed in terms of how such PWHT overshoots might affect mechanical properties during high-temperature service. coal-fired power plants ferritic creep-resistant steel headers microstructure normalizing steam piping tempering welding Advances...
Abstract
View Papertitled, The Effect of Simulated Post Weld Heat Treatment Temperature Overshoot on Microstructural Evolution in P91 and P92 Power Plant Steels
View
PDF
for content titled, The Effect of Simulated Post Weld Heat Treatment Temperature Overshoot on Microstructural Evolution in P91 and P92 Power Plant Steels
Creep strength enhanced ferritic (CSEF) steels, particularly modified 9Cr steels Grade 91 and 92, are increasingly used in advanced coal-fired power plants for header and steam piping construction. While these materials typically enter service after receiving a standard high-temperature normalizing treatment followed by lower temperature tempering to achieve optimal microstructure, practical situations like welding operations may expose components to additional heat treatment exceeding the Ac 1 , and potentially the Ac 3 , temperature before returning to tempering temperature. This research examines the effects of simulated post weld heat treatments (PWHT) on Grade 91 and 92 materials using dilatometer-controlled heating and cooling rates, with peak temperatures below Ac 1 , between Ac 1 and Ac 3 , and above Ac 3 , followed by heat treatment at 750°C for 2 hours. Hardness measurements revealed significant reduction when exceeding the Ac 1 temperature, while advanced electron microscopy, including electron back scatter diffraction, was employed to analyze changes in martensite laths and grain structure, along with detailed carbide size distribution analysis using both scanning and transmission electron microscopy. The findings are discussed in terms of how such PWHT overshoots might affect mechanical properties during high-temperature service.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 295-303, October 11–14, 2016,
...-developed AFA alloy based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%) shows better creep performance than a commercially-available Fe-based superalloy. In this paper we used scanning electron microscopy and transmission electron microscopy to study the fracture surfaces and cracking behavior in relation...
Abstract
View Papertitled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
View
PDF
for content titled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
Alumina-forming austenitic stainless steels (AFAs) are potential materials for boiler/steam turbine applications in next generation fossil fuel power plants. They display a combination of good high temperature creep strength, excellent oxidation resistance and low cost. A recently-developed AFA alloy based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%) shows better creep performance than a commercially-available Fe-based superalloy. In this paper we used scanning electron microscopy and transmission electron microscopy to study the fracture surfaces and cracking behavior in relation to the precipitates present in creep failure samples of this alloy tested at either 750°C/100 MPa or 700°C/170 MPa. It was found that most cracks are formed along the grain boundaries with precipitate-free zones beside the grain boundaries potentially providing the path for propagation of cracks.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results...
Abstract
View Papertitled, Microstructure Evolution and Precipitates Stability in Inconel Alloy 740H during Creep
View
PDF
for content titled, Microstructure Evolution and Precipitates Stability in Inconel Alloy 740H during Creep
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
... Abstract The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM...
Abstract
View Papertitled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant Applications as a Consequence of High Temperature Degradation and Rejuvenation Heat Treatments
View
PDF
for content titled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant Applications as a Consequence of High Temperature Degradation and Rejuvenation Heat Treatments
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
... 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques. atom probe tomography boilers creep rupture strength creep specimens creep testing light optical metallography martensitic stainless steel...
Abstract
View Papertitled, Super VM12—A New 12% Cr Boiler Steel
View
PDF
for content titled, Super VM12—A New 12% Cr Boiler Steel
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, February 25–28, 2025,
... insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels. corrosion resistance crystal structure electron diffraction martensitic stainless steel quenching temper embrittlement tempering transmission electron microscopy turbine...
Abstract
View Papertitled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
View
PDF
for content titled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
... 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests...
Abstract
View Papertitled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
View
PDF
for content titled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density...
Abstract
View Papertitled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
View
PDF
for content titled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 377-387, October 11–14, 2016,
... techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship...
Abstract
View Papertitled, Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
View
PDF
for content titled, Microstructure Impacts on Mechanical Properties in a High Temperature Austenitic Stainless Steel
Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship between traditional melting and extrusion as compared to powder metallurgy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 486-493, October 11–14, 2016,
...., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. Change ratio of the system free energy and creep stress showed the relationship with one master curve irrespective of creep conditions, indicating that the steel ruptures when the applied stress...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
In order to evaluate long term creep strength of modified 9Cr ferritic steels, the system free energy of creep ruptured specimens at both 650 and 700 °C is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. Change ratio of the system free energy and creep stress showed the relationship with one master curve irrespective of creep conditions, indicating that the steel ruptures when the applied stress exceeds a limited stress depending on the microstructural state expressed by the change ratio of system free energy. Furthermore, it was found that dominant factor of the change ratio was the chemical free energy change. On the basis of these results, long term creep strength of the steel was evaluated at 700 °C, for example, 19MPa at 700 °C after 10 5 h. It is concluded that long term creep strength of modified 9Cr ferritic steels can be predicted by the system free energy concept using the ruptured specimens with various creep conditions.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1363-1371, October 22–25, 2013,
... energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
Prediction of long-term creep strength is an important issue for industrial plants operated at elevated temperatures, although the creep strength of high Cr ferritic steels depends on their microstructural evolution during creep. The state of microstructure in metallic materials can be expressed as numerical values based on a concept of system free energy. In this study, in order to evaluate long term creep strength of 9Cr ferritic steel containing B, change in the system free energy during creep of the steel is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using the rate constants which depend on applied stress. On the basis of these facts, long term creep strength of the steel can be evaluated at both 948K(675°C) and 973K(700 °C).
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 675-688, October 3–5, 2007,
... that increasing boron content while adjusting nitrogen levels could enhance creep properties by promoting fine vanadium carbonitride formation while preventing boron nitride formation. This study presents microstructural investigations, particularly using transmission electron microscopy, focusing...
Abstract
View Papertitled, Microstructural Characterization of Modern Martensitic Steels
View
PDF
for content titled, Microstructural Characterization of Modern Martensitic Steels
TAF steel is a Japanese high-boron 10.5% Cr martensitic stainless steel known for its exceptional high-temperature creep strength. Its high boron content (300-400 ppm) limited practical applications due to reduced hot workability in large turbine components. Recent research suggests that increasing boron content while adjusting nitrogen levels could enhance creep properties by promoting fine vanadium carbonitride formation while preventing boron nitride formation. This study presents microstructural investigations, particularly using transmission electron microscopy, focusing on precipitation characteristics and long-term precipitate evolution within the COST 536 framework.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
..., was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power...
Abstract
View Papertitled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
Creep-Fatigue Interactions in 9CR Martensitic Cast Steel—Microstructure and Mechanical Behavior
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 273-281, October 21–24, 2019,
... to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were...
Abstract
View Papertitled, Creep-Fatigue Interactions in 9CR Martensitic Cast Steel—Microstructure and Mechanical Behavior
View
PDF
for content titled, Creep-Fatigue Interactions in 9CR Martensitic Cast Steel—Microstructure and Mechanical Behavior
This study presents a characterization of the microstructural evolutions taking place in a 9%Cr martensitic cast steel subjected to fatigue and creep-fatigue loading. Basis for this study of investigation is an extensive testing program performed on a sample heat of this type of steel by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were determined by using thin metal foils in TEM. A recovery process consisting of the coarsening of the subgrains and a decrease of the dislocation density was observed in different form. This coarsening is heterogeneous and depends on the applied temperature, strain amplitude and hold time. These microstructural observations are consistent with the very fast deterioration of creep properties due to cyclic loading.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1149-1160, February 25–28, 2025,
... Abstract A FeCrMnNi concentrated solid-solution alloy was irradiated with a 2 MeV proton beam up to 1 dpa and 6 dpa at temperatures of 400 °C and 600 °C. The microstructural changes induced by irradiation were characterized using Transmission Electron Microscopy (TEM). In samples irradiated...
Abstract
View Papertitled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
View
PDF
for content titled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
A FeCrMnNi concentrated solid-solution alloy was irradiated with a 2 MeV proton beam up to 1 dpa and 6 dpa at temperatures of 400 °C and 600 °C. The microstructural changes induced by irradiation were characterized using Transmission Electron Microscopy (TEM). In samples irradiated at 400 °C, Frank loops were the predominant form of lattice damage at 1 dpa, whereas small defect clusters were more prevalent at 6 dpa. For the sample irradiated to 1 dpa at 600 °C, both Frank loops and small defect clusters were present in similar density. Nanoindentation was employed to assess the changes in mechanical properties (hardness) post-irradiation, revealing significant hardening in all irradiated samples. The results indicated that the hardening effect began to saturate at 1 dpa or earlier. Additionally, nanoindentation creep tests with a 1200-second dwell period produced stress exponents comparable to those obtained from conventional creep testing. The findings suggest a shift in the deformation mechanism from dislocation glide to dislocation climb in the sample irradiated to 6 dpa at 400 °C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1183-1197, October 25–28, 2004,
... nitride precipitation creep life creep strength creep testing crystallographic analysis martensitic stainless steel scanning electron microscopy test specimens transmission electron microscopy httpsdoi.org/10.31399/asm.cp.am-epri-2004p1183 Copyright © 2005 ASM International® 1183 1184 1185 1186...
Abstract
View Papertitled, Aluminum Nitride Precipitation in Low Strength Grade 91 Power Plant Steels
View
PDF
for content titled, Aluminum Nitride Precipitation in Low Strength Grade 91 Power Plant Steels
This paper investigates the cause of premature failures in certain Grade 91 steel components used in UK power plants. The failures were linked to both low material hardness and specific chemical compositions that fell within ASTM specifications but had a low nitrogen-to-aluminum ratio (N:Al). The investigators examined eight material batches, including those involved in failures, new stock, and in-service components with similar properties. Testing confirmed these materials had lower creep resistance compared to standard Grade 91 steel. Microscopic analysis revealed the presence of large aluminum nitride precipitates, which limited the formation of beneficial vanadium nitride precipitates, leading to reduced creep strength. These findings suggest that even within the ASTM specification limits, a low N:Al ratio can negatively impact the performance of Grade 91 steel.
1