Skip Nav Destination
Close Modal
Search Results for
thermal stability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 147 Search Results for
thermal stability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 398-404, October 21–24, 2019,
... on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced...
Abstract
View Paper
PDF
Ni-38Cr-3.8Al has high hardness and high corrosion resistance with good hot workability, and therefore, it has been applied on various applications. However, in order to expand further application, it is important to understand the high temperature properties. Then, this study focused on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced by the temperature. Although the high temperature properties, except for creep property, of Ni-38Cr-3.8Al were superior to those of conventional Ni-based superalloys, the properties were dramatically degraded beyond 973 K. This is because the lamellar structure begins to collapse around 973 K due to the thermal stability of the lamellar structure. The hot corrosion resistance of Ni-38Cr-3.8Al was superior to that of conventional Ni-based superalloys, however, the advantage disappeared around 1073 K. These results indicate that Ni-38Cr-3.8Al is capable as a heat resistant material which is required the hot corrosion resistance rather than a heat resistant material with high strength at high temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle...
Abstract
View Paper
PDF
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 143-154, October 22–25, 2013,
... candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates...
Abstract
View Paper
PDF
A global movement is pushing for improved efficiency in power plants to reduce fossil fuel consumption and CO 2 emissions. While raising operating temperatures and pressures can enhance thermal efficiency, it necessitates materials with exceptional high-temperature performance. Currently, steels used in power plants operating up to 600°C achieve efficiencies of 38-40%. Advanced Ultra Supercritical (A-USC) designs aim for a significant leap, targeting steam temperatures of 700°C and pressures of 35 MPa with a lifespan exceeding 100,000 hours. Ni-based superalloys are leading candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates the microstructural evolution in large, sand-cast components of Haynes 282. Microstructure, referring to the arrangement of grains and phases within the material, significantly impacts its properties. The research examines the alloy in its as-cast condition and after various pre-service heat treatments, aiming to fully identify and quantify the microstructural changes. These findings are then compared with predictions from thermodynamic equilibrium calculations using a dedicated Ni alloy database. The research reveals that variations in heat treatment conditions can significantly affect the microstructure development in Haynes 282, potentially impacting its mechanical properties.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750...
Abstract
View Paper
PDF
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 440-445, October 11–14, 2016,
... (CCPP). The applications for which this material is used enforce severe requirements on strength, corrosion, creep properties and thermal stability during service. The properties of Creep Strength Enhanced Ferritic steels (CSEF) such as Grade 91 are critically dependent on manufacturing factors like...
Abstract
View Paper
PDF
Grade 91 steel has achieved broad acceptance within the modern boiler industry to fabricate a variety of critical pressure components including tubing, piping and headers, particularly in Ultra Super Critical (USC), Advanced Ultra Super Critical (A-USC) and Combined Cycle Power Plants (CCPP). The applications for which this material is used enforce severe requirements on strength, corrosion, creep properties and thermal stability during service. The properties of Creep Strength Enhanced Ferritic steels (CSEF) such as Grade 91 are critically dependent on manufacturing factors like steelmaking, heat treatments and welding: poor control of these parameters can severely compromise material properties. In scientific literature, several studies correlate low creep ductility to high content of trace elements such As, Sn, Sb, Pb, Cu, P and S. Since the current reference Codes, namely ASTM/ASME, don’t require particular restrictions for these elements, Electric Power Research Institute (EPRI) has issued guidelines for grade 91 which enforce a significant reduction of impurities and trace elements. This paper discusses steelmaking operating challenges to produce Grade 91 steel with very low contents of the above mentioned residual elements, starting from the furnaces charges, up to the chemical composition measuring equipment used in the steel shop laboratories.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 912-923, October 11–14, 2016,
... candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications...
Abstract
View Paper
PDF
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 614-620, October 21–24, 2019,
... tests were carried out at 1150 °C in still air in order to investigate the thermal stability and oxidation behavior of the coatings and they were compared with electroplated diffusion coatings. It was found that Ir can retard the formation of voids in both the coatings and substrates. In addition...
Abstract
View Paper
PDF
A paste, which contains Pt or Pt-xIr (x = 0-30 at%) alloy nano-powder was sprayed on some Ni-based single crystal superalloys. Then the annealing diffusion treatment at 1100 °C for 1 h in flowing Ar atmosphere was conducted to develop Pt and Pt-Ir diffusion coatings. Cyclic oxidation tests were carried out at 1150 °C in still air in order to investigate the thermal stability and oxidation behavior of the coatings and they were compared with electroplated diffusion coatings. It was found that Ir can retard the formation of voids in both the coatings and substrates. In addition, by replacing the electroplating method to the paste coating method, the crack problem due to the brittle feature of electroplated Pt-Ir coatings could be solved. Therefore, the Pt-Ir diffusion coating prepared by the paste- coating method is promising as the bond-coat material due to suppression of voids, cracks and stable Al 2 O 3 on the surface. The Pt-Ir paste diffusion coatings introduced above have several further advantages: they are easy to recoat, cause less damage to substrates, and offer comparable oxidation resistance. Thus, the method can be applicable to the remanufacturing of blades, which may extend the life of components. The future aspect of the paste coating will also be discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
... of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep...
Abstract
View Paper
PDF
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 120-130, October 22–25, 2013,
...), low cycle fatigue properties at 649°C to 871°C (1200°F to 1600°F) and long-term thermal stability at 649°C to 871°C (1200°F to 1600°F). Special focus of the paper will be mechanical behavior: tensile and creep; microstructural analysis, and weldability of 282 alloy as a result of single step age...
Abstract
View Paper
PDF
In an earlier paper, preliminary data for HAYNES 282 alloy was presented for potential advanced steam power plant applications. Since then, 282 alloy has continued to be evaluated for a variety of A-USC applications: superheater boiler tubing, large header piping, rotors, casings, etc. Per current practice the alloy achieves its strengthening by a two-step age hardening heat treatment. Given the difficulty of such a procedure, particularly for larger components in the power plant, interest has focused on the development of a single step age hardening treatment. While considerable work on 282 alloy is still going on by a number of investigators, during the preceding years a large amount of data was generated in characterizing the alloy at Haynes International. This paper will briefly review the behavior of 282 alloy in air and water vapor oxidation (10% H 2 O) at 760°C (1400°F), low cycle fatigue properties at 649°C to 871°C (1200°F to 1600°F) and long-term thermal stability at 649°C to 871°C (1200°F to 1600°F). Special focus of the paper will be mechanical behavior: tensile and creep; microstructural analysis, and weldability of 282 alloy as a result of single step age hardening heat treatment: 800°C (1475°F)/8hr/AC.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
... particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed...
Abstract
View Paper
PDF
Effects of Ni content and heat treatment condition on impact toughness and creep strength of precipitation strengthened 15Cr ferritic steels were investigated in order to discuss a possibility of improvement in both mechanical properties. Both creep strength and impact toughness of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed in the Ni added steels, and such microstructure reduced the precipitation strengthening effect slightly. On the other hand, increase in impact values of the steel indicated no relation to volume fraction of martensite phase. It was supposed that the impact toughness of ferrite phase itself was improved by solid solution treatment and addition of Ni.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
... intermetallic compounds of Ni3(Al, Ti)-g' are used as a strengthener with high thermal stability. On the other hand, conventional austenitic heatresistant steels strengthened by metallic carbides show the lower 105 h creep strength at 973 K due to the lower thermal stability of carbide than intermetallic...
Abstract
View Paper
PDF
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 265-272, October 21–24, 2019,
... at high temperature [1]. At the same time, about 1.0 mass% Cu is added to restrain the occurrence of -ferrite, so that it has higher thermal stability[2]. It can be used in superheaters, reheaters and main steam tubes of ultra-supercritical thermal power plant boilers which served at 650 . However, due...
Abstract
View Paper
PDF
The microstructures and mechanical properties of T122 steel used for superheater tube of the boiler in a 1000 MW ultra supercritical power plant after service for 83,000h at 590℃ were investigated, and compared with data of that served for 56,000h in previous studies. The results show that compared with T122 tube sample service for 56,000h, the tensile properties at room temperature and the size of precipitated phase exhibit few differences, but the lath martensites features are apparent, and the Brinell hardness value are obviously higher. SEM and TEM experiments show that the substructure is still dominated by lath martensite. A few lath martensites recover, subgrains appear and equiaxe, and the dislocation density in grains is relatively low. A large number of second-phase particles precipitated at boundaries of original austenite grains and lath martensite phases, which are mainly M 23 C 6 and Laves phases.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 246-252, October 21–24, 2019,
... and temperature, are mandatory. Hence, advanced materials are needed. The present study focuses on stainless, high strength, ferritic (non-martensitic) steel grades, regarding thermal treatment effects on particle evolution. The heat treatment includes variations, e.g. a two phase pre heat treatment. Effects...
Abstract
View Paper
PDF
More efficient, sustainable, flexible and cost-effective energy technologies are strongly needed to fulfil the new challenges of the German “Energiewende”. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Hence, advanced materials are needed. The present study focuses on stainless, high strength, ferritic (non-martensitic) steel grades, regarding thermal treatment effects on particle evolution. The heat treatment includes variations, e.g. a two phase pre heat treatment. Effects of the treatment were analysed and connected to creep performance. Experiments at differently heat treated materials show promising improvement of creep performance. These results can be linked to the stability and evolution of strengthening Laves phase particles.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
... to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly...
Abstract
View Paper
PDF
Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation of components in hot gas flow path. The main potential risk of material degradation from these fuels is “hot corrosion” due to the contaminants listed above combined with alkali metal salts from ambient air. Depending on the temperature regime hot corrosion can damage both TBC coatings and bond coat/substrate materials. Deposit-induced or hot corrosion has been defined as “accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit”. For the initiation of hot corrosion, deposition of the corrosive species, e.g. vanadates or sulfates, is necessary. In addition to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly on following three factors: deposit chemistry, gas constituents and metal alloy (or bond coating/thermal barrier coating) composition. This paper reports the activities involved in establishing modeling and simulation followed by testing/characterization methodologies in relevant environments to understand the degradation mechanisms essential to assess the localized risk for fuel flexible operation. An assessment of component operating conditions and gas compositions throughout the hot gas paths of the gas turbines, along with statistical materials performance evaluations of metal losses for particular materials and exposure conditions, are being combined to develop and validate life prediction methods to assess component integrity and deposition/oxidation/corrosion kinetics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 842-851, October 21–24, 2019,
... Abstract Advanced martensitic 9% chromium steels have been identified as the most favored group of materials for high temperature applications in thermal power plants. To extend the temperature range of martensitic steels up to 650°C large effort was put on the development of new alloy concepts...
Abstract
View Paper
PDF
Advanced martensitic 9% chromium steels have been identified as the most favored group of materials for high temperature applications in thermal power plants. To extend the temperature range of martensitic steels up to 650°C large effort was put on the development of new alloy concepts. The so-called MARBN concept (Martensitic steel with defined Boron/Nitrogen relation) provides increased creep rupture strength due to higher solid solution strengthening and improved microstructural stability. The major improvement is the reduction of type IV cracking in welded joints, which shifts the focus to the creep rupture strength of the weld metal. This paper illustrates the process experience of the steel foundry for production of heavy cast components in latest state of the art 9-12%Cr-MoCoVNbNB-alloyed cast steel grades and the newest state of development and prototype components in MARBN cast steel grades. Metallurgy, solidification, heat treatment and welding are main items to be considered for development of new, complex steel grades for foundry processing with the help of empiric processing in test programs and thermo-physical simulation. As welding is an essential processing step in the production of heavy steel cast components a good out-of-position weldability is required. Moreover a stress-relieve heat-treatment takes place subsequently after welding for several hours. This contribution also deals with the development of matching welding consumables for the production of heavy cast components and discusses the challenges of defining appropriate welding and heat treatment parameters to meet the requirements of sufficient strength and toughness at ambient temperature. Additionally, first results of creep rupture tests are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... Abstract Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal...
Abstract
View Paper
PDF
Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability of 800°C with high manufacturability achieved by controlling microstructure stability and segregation property. The 700°C class A-USC materials are the mainstream of current development, and trial production of 10 ton-class forged parts has been reported. However, there have been no reports on the development and trial manufacturing of the A-USC materials with temperature capability of 800°C. In this report, results of trial manufacturing and its microstructure of the developed superalloy which has both temperature capability 800°C and good manufacturability are presented. The trial manufacturing of the large forging, boiler tubes and turbine blades using developed material were successfully achieved. According to short term creep tests of the large forging and the tube approximate 100,000h creep strength of developed material was estimated to be 270MPa at 700 °C and 100MPa at 800°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 360-370, October 22–25, 2013,
... cycling test gas composition gas-fired land based turbines microstructure superalloys thermal barrier coating; water vapor content yttria-stabilized zirconia Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25, 2013...
Abstract
View Paper
PDF
While the water vapor content of the combustion gas in natural gas-fired land based turbines is ~10%, it can be 20-85% with coal-derived (syngas or H 2 ) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO 2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1h cycles) were performed in air with 10, 50 and 90 vol.% water vapor and in CO 2 -10%H 2 O and compared to prior results in dry air or O 2 . Two types of TBCs were investigated: (1) diffusion bond coatings (Pt diffusion or simple or Pt-modified aluminide) with commercially vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air-plasma sprayed YSZ top coatings on superalloy X4 or 1483 substrates. In both cases, a 20-50% decrease in coating lifetime was observed with the addition of water vapor for all but the Pt diffusion coatings which were unaffected by the environment. However, the higher water vapor contents in air did not further decrease the coating lifetime. Initial results for similar diffusion bond coatings in CO 2 -10%H 2 O do not show a significant decrease in lifetime due to the addition of CO 2 . Characterization of the failed coating microstructures showed only minor effects of water vapor and CO 2 additions that do not appear to account for the observed changes in lifetime. The current 50°-100°C de-rating of syngas-fired turbines is unlikely to be related to the presence of higher water vapor in the exhaust.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... with satisfactory quality confirmed through destructive evaluation. austenitic stainless steel coefficient of thermal expansion creep rupture strength forging high-temperature strength manufacturability nickel-based superalloys phase stability steam turbines Advances in Materials Technology...
Abstract
View Paper
PDF
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1081-1092, October 22–25, 2013,
... Abstract Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense...
Abstract
View Paper
PDF
Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense of the strengthening precipitates, and therefore suffer an accelerated decline in strength during longterm operation. While the concept of ferritic-martensitic chromium steels thus seems to hit technological limitations, further improvement in steam power plant efficiency necessitates a further increase of steam pressure and temperature. Furthermore increasing integration of intermitting renewable energy technologies in electrical power generation poses a great challenge for supply security, which has to be ensured on the basis of conventional power plant processes. Besides improved efficiency for resource preservation, load flexibility, thermal cycling capability and downtime corrosion resistance will play key roles in the design of tailored materials for future energy technology. Under these preconditions a paradigm shift in alloy development towards improvement of cyclic steam oxidation and downtime corrosion resistance in combination with adequate creep and thermomechanical fatigue strength seems to be mandatory. The steam oxidation, mechanical and thermomechanical properties of fully ferritic 18 - 24 wt.-% chromium model alloys, strengthened by the precipitation of intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase particles, indicate the potential of this type of alloys as candidate materials for application in highly efficient and highly flexible future supercritical steam power plants.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 191-201, October 25–28, 2004,
... Abstract Achieving long-term stability of the tempered martensite is considered crucial for increasing the creep resistance of steels at elevated temperatures above 700°C. It is noted that at low stress levels, the creep deformation of the tempered martensite proceeds heterogeneously around...
Abstract
View Paper
PDF
Achieving long-term stability of the tempered martensite is considered crucial for increasing the creep resistance of steels at elevated temperatures above 700°C. It is noted that at low stress levels, the creep deformation of the tempered martensite proceeds heterogeneously around prior austenite grain boundaries, as excess dislocations inside the grain are difficult to rearrange. This paper presents a new approach using carbon-free martensitic alloys strengthened by intermetallic compounds. An iron-nickel-cobalt martensite matrix with Laves phase as the precipitate is selected. The creep characteristics are discussed across a wide range of testing conditions, and the thermal cycle test behavior is examined to evaluate the potential of these alloys for future ultrasupercritical power plants operating in severe environments.
1