Skip Nav Destination
Close Modal
Search Results for
thermal power generation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 412
Search Results for thermal power generation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1033-1043, February 25–28, 2025,
... Abstract For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed...
Abstract
View Papertitled, Materials Technology for Innovative <span class="search-highlight">Thermal</span> <span class="search-highlight">Power</span> <span class="search-highlight">Generation</span> System Toward Carbon Neutrality in Japan
View
PDF
for content titled, Materials Technology for Innovative <span class="search-highlight">Thermal</span> <span class="search-highlight">Power</span> <span class="search-highlight">Generation</span> System Toward Carbon Neutrality in Japan
For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed. The key to realize the thermal power plant is in the developments of new wrought alloys applicable to both gas turbine and steam turbine components under higher temperature operation conditions. In the national project of JST-Mirai program, we have constructed an innovative Integrated Materials Design System , consisting of a series of mechanical property prediction modules (MPM) and microstructure design modules (MDM). Based on the design system, novel austenitic steels strengthened by Laves phase with an allowable stress higher than 100 MPa for 10 5 h at 700°C was developed for the stream turbine components. In addition, for gas turbine components, novel solid-solution type Ni-Cr-W superalloys were designed and found to exhibit superior creep life longer than 10 5 h under 10 MPa at 1000°C. The superior long-term creep strengths of these alloys are attributed to the “grain-boundary precipitation strengthening (GBPS)” effect due to C14 Fe 2 Nb Laves phase and bcc α 2 -W phase precipitated at the grain boundaries, respectively.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, February 25–28, 2025,
... casting thermal power generation welding investigations Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0328 Copyright © 2024 ASM...
Abstract
View Papertitled, Steel Casting Process Development: Advanced Processing of Martensitic 9-10% Cr Steels and Nickel-Base Alloy 625
View
PDF
for content titled, Steel Casting Process Development: Advanced Processing of Martensitic 9-10% Cr Steels and Nickel-Base Alloy 625
The voestalpine foundry group, operating at locations in Linz and Traisen, Austria, specializes in heavy steel casting components ranging from 1 to 200 tons for power generation, oil and gas, chemical processing, and offshore applications. Their manufacturing expertise encompasses high-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation and simulation for all thermal processes, from material development through final casting. The foundries’ comprehensive capabilities include specialized melting, molding, heat treatment, non-destructive testing, and fabrication welding, with particular emphasis on joining dissimilar cast, forged, and rolled materials. Looking toward future innovations, the group is exploring additive manufacturing for mold production and robotic welding systems to enhance shaping and surface finishing capabilities.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
...; steam valve jam; steam oxidation; surface nitridation INTRODUCTION Industrial steam turbines are widely found in the thermal power generation industry and utilized in a variety of applications. Regardless of the steam-turbine type or application being considered, speed and/or load control...
Abstract
View Papertitled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
View
PDF
for content titled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 260-270, October 3–5, 2007,
... emission from thermal power plant, and it is necessary to increase the efficiency of the thermal power generation at present. It is, furthermore, desirable that the increase of the efficiency can be completed by the natural gas or coal which is substituted for oil, because of the decrease of the dependence...
Abstract
View Papertitled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC <span class="search-highlight">Power</span> Plants
View
PDF
for content titled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC <span class="search-highlight">Power</span> Plants
In response to the need to reduce carbon dioxide gas emissions, Japan has been actively researching 700°C-class thermal power plants with a focus on improving overall plant efficiency. This technological advancement is fundamentally grounded in advanced materials development, encompassing the creation of high-strength alloys, fireside corrosion-resistant materials, and steamside oxidation-resistant alloys. A significant challenge emerged as some of the developed materials fell outside the scope of existing domestic technical standards. Moreover, the potential failure modes for advanced ultra-supercritical (A-USC) components operating at 700°C were anticipated to differ substantially from those observed in traditional ultra-supercritical (USC) components at 600°C. Consequently, researchers systematically examined and analyzed the potential failure modes specific to 700°C A-USC components, using these insights to establish comprehensive performance requirements. The research initiative, which commenced in June 2006, was strategically planned to develop a draft technical interpretation by March 2011. This paper provides a detailed overview of the investigative process, encompassing the comprehensive analysis of failure modes, the derivation of performance requirements, and the progression toward developing a new technical interpretation framework for high-temperature power plant components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1408-1417, October 21–24, 2019,
... In Japan, 90 % of the energy used has relied on thermal power generation since the earthquake. Among the thermal power generation, coal thermal power generation using coal which is inexpensive and universally present in the world is important. Increasing the energy efficiency of this coal thermal power...
Abstract
View Papertitled, Experimental and Computational Study on Grain Boundary and Grain Interior Precipitation of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
View
PDF
for content titled, Experimental and Computational Study on Grain Boundary and Grain Interior Precipitation of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through experimental study at different temperatures and thermokinetic calculation. The steel samples were prepared by arc melting followed by 65% cold rolling. Subsequently, the samples were solution treated within the γ single-phase region to control the grain size to approximately 150 μm. Aging of the solution-treated samples was carried out at temperatures ranging from 973 K to 1473 K for up to 3600 hours. Microstructural observations were conducted using FE-SEM, and the chemical compositions of the γ matrix and precipitates of Laves and δ phases were analyzed using EPMA. The precipitation modeling was performed using MatCalc software, utilizing a thermodynamic database constructed by our research group to calculate the chemical potential of each phase. Classical nucleation theory was applied for nucleation, while the SFFK model was employed for the growth and coarsening stages. Distinct phases were defined for grain boundary and grain interior Laves phase, with all precipitates assumed to have spherical morphology in the calculations. The precipitation start time was defined as the time when the precipitate fraction reached 1%. Experimental results indicated that above 973 K, Laves phase nucleation primarily occurred on grain boundaries before extending into the grain interior, with the nose temperature located around 1273 K. To replicate the experimentally determined Time-Temperature-Precipitation (TTP) diagram, interaction parameters among elements were adjusted. Additionally, by introducing lower interfacial energy between the γ matrix and Laves phase, the TTP diagram was successfully reproduced via calculation, suggesting relative stability at the interface.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... for the Furnished Austenite Stainless Steel Boiler Tubes Upon Their Safe Operation Performance, Thermal Power Generation, Vol. 39, No. 3(2010), pp. 49-52. [4] Ma H., Zhang L. et al, Study on Servicing Behavior of Boiler Tubes Made from 18-8 Type Austenitic Stainless Steel (6 Thermal Power Generation, Vol. 41...
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil <span class="search-highlight">Power</span> Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil <span class="search-highlight">Power</span> Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 590-599, October 11–14, 2016,
... thermal power generating unit in the second year since its operation, discontinuous surface cracks were found along the entire weld of boiler-front steam tee (Fig. 1) for the high-temperature reheated steam pipe of the unit. The pipe is made of material P92, with a specification of OD 976 × 45 mm...
Abstract
View Papertitled, Analysis on Effect of Piping Stress and Supports and Hangers on Cracking of Tee Welds
View
PDF
for content titled, Analysis on Effect of Piping Stress and Supports and Hangers on Cracking of Tee Welds
The piping stress and thermal displacement corresponding to different types of riser rigid support and hanger devices in different installation directions have been calculated by means of finite element analysis, to further analyze the impact on cracking of adjacent steam tee welds exerted by the constraint effect of riser rigid hangers on angular displacement. It can be seen from the analysis that a riser rigid hanger has a constraint effect on angular displacement, and such a constraint effect, however, is weak and limited on the piping stress and thermal displacement, so the piping stress and supports and hangers are not the main reasons for the cracking of tee welds. In addition, the calculation results alert that for an axial limiting hanger of riser with a dynamic axial pipe clamp and rigid struts, its constraint effect on angular displacement has a significant impact on the piping stress and thermal displacement.
Proceedings Papers
The Development of Electric Power and High-Temperature Materials Application in China: An Overview
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 46-58, October 3–5, 2007,
... as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants...
Abstract
View Papertitled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
View
PDF
for content titled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
The rapid development of Chinese economy (recently in the order of 10%/year) is requiring sustainable growth of power generation to meet its demand. In more than half century after the foundation of People's Republic of China, the Chinese power industry has reached a high level. Up to now, the total installed capacity of electricity and annual overall electricity generation have both jumped to the 2 nd position in the world, just next to United States. A historical review and forecast of China electricity demand to the year of 2010 and 2020 will be introduced. Chinese power plants as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants with the steam temperature up to 600°C or higher will get a rapid development. The first two series of 2×1000MW USC power units with the steam parameters 600°C, 26.25MPa have been put into service in November and December 2006 respectively. In recent years more than 30 USC power units will be installed in China. USC power plant development will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing. Among those materials the modified 9- 12%Cr ferritic steels, Ni-Cr austenitic steels and a part of nickel-base superalloys have been paid special attention in Chinese materials market.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... Association of electric power enterprises, Analysis and prediction of national electric supply and demand of the first quarter of 2016, April, 24, 2016 3. Y.T.Xue, S.M.Yang, C.H.Mu, et al, Study on international competitiveness of china s coal fired power generation technology, Thermal Power Generation, Vol...
Abstract
View Papertitled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
View
PDF
for content titled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 24-40, October 22–25, 2013,
... in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
We have reported on the effort being done to develop the A-USC technology in Japan, which features the 700 deg-C steam condition, since the 2007 EPRI conference. Our 9 year project began in 2008. There have been some major changes in the electricity power market in the world recently. At first, the earthquake changed the power system violently in Japan. Almost all nuclear power plants have been shut down and natural gas, oil and coal power plants are working fully to satisfy the market's demands. In the USA, the so called ‘Shale gas revolution’ is going on. In Europe, they are working toward the target of reducing CO 2 emissions by the significant use of renewables with the backup of the fossil fuel power systems and enhancing power grids. A very rapid increase in power generation by coal is being observed in some countries. Despite some major changes in the electric sector in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have been done during the first half of the project term. Long term material tests such as creep rupture of base materials and welds will be conducted for 100,000hrs continuing after the end of the project with the joint effort of each participating company. Today, we are preparing the plan for the second half of the project, which is made up of boiler components test and the turbine rotating tests. Some boiler superheater panels, large diameter pipes and valves will be tested in a commercially operating boiler from 2015 to 2017. The turbine rotor materials which have the same diameter as commercial rotors will be tested at 700 deg-C and at actual speed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 434-446, October 3–5, 2007,
... to meet such demands, it is necessary to reduce CO2 gas emissions by converting fuel energy more efficiently into electric energy, thus reducing the amount of fuel consumed in power plants. For conventional thermal power generation, high temperature and high pressure was promoted to increase the unit...
Abstract
View Papertitled, Development of Ni-Based Superalloy for Advanced 700°C-Class Steam Turbines
View
PDF
for content titled, Development of Ni-Based Superalloy for Advanced 700°C-Class Steam Turbines
Advanced 700°C-class steam turbines require the use of austenitic alloys instead of conventional ferritic 12Cr steels, which are inadequate in creep strength and oxidation resistance above 650°C. While austenitic alloys offer improved performance, they traditionally possess a significantly higher coefficient of thermal expansion (CTE) compared to 12% Cr steels. Through extensive research, the authors systematically investigated the effects of various alloying elements on thermal expansion and high-temperature strength. As a result of these investigations, they developed "LTES700," an innovative nickel-based superalloy specifically designed for steam turbine bolts and blades. This novel alloy uniquely combines a coefficient of thermal expansion comparable to 12Cr steels with high-temperature strength equivalent to conventional superalloys like Refractaloy 26, effectively addressing the critical limitations of previous materials.
Proceedings Papers
Long-Term Performance of High Temperature Alloys in Oxidizing Environments and Supercritical CO 2
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 953-966, October 21–24, 2019,
... reaction and subsequent vaporization of chromia. This requires that the alloys have sufficient chromium content to form and sustain the continued growth of chromia. Most of the power generation applications such as CSP and A-USC have the requirement of >100,000h operating lifetimes with frequent thermal...
Abstract
View Papertitled, Long-Term Performance of High Temperature Alloys in Oxidizing Environments and Supercritical CO 2
View
PDF
for content titled, Long-Term Performance of High Temperature Alloys in Oxidizing Environments and Supercritical CO 2
Long-term performance of high temperature alloys is critically linked to the oxidation behavior in power generation applications in wet air and steam. As power generation systems move towards higher efficiency operation, nextgeneration fossil, nuclear and concentrating solar power plants are considering supercritical CO 2 cycle above 700°C. Wrought solid solution strengthened and precipitations strengthened alloys are leading candidates for both steam and Supercritical CO 2 power cycles. This study evaluates the cyclic oxidation behavior of HAYNES 230, 282, and 625 alloys in wet air, flowing laboratory air, steam and in 1 and 300 bar Supercritical CO 2 at ~750°C for duration of 1000 -10,000h. Test samples were thermally cycled for various times at temperature followed by cooling to room temperature. Alloy performances were assessed by analyzing the weight change behavior and extent of attack. The results clearly demonstrated the effects of alloy composition and environment on the long-term cyclic oxidation resistance. The extents of attack varied from alloy to alloy but none of the alloys underwent catastrophic corrosion and no significant internal carburization was observed in supercritical CO 2 . The performance of these alloys indicates that these materials are compatible not only in oxidizing environments, but also in Supercritical CO 2 environments for extended service operation.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies. corrosion resistance creep rupture strength fabricability fatigue characteristics fired steam power plants fossil power plants fracture mechanics...
Abstract
View Papertitled, Nickel Alloys for High Efficiency Fossil <span class="search-highlight">Power</span> Plants
View
PDF
for content titled, Nickel Alloys for High Efficiency Fossil <span class="search-highlight">Power</span> Plants
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 325-341, August 31–September 3, 2010,
... targets the commercialization of a 700°C class pulverized coal power system with a power generation efficiency of 46% by around 2015. As of 2004, Japan's pulverized coal power plant capacity reached 35 GW, with the latest plants achieving a steam temperature of 600°C and a net thermal efficiency...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
The “Cool Earth-Innovative Energy Technology Program,” launched by the Japanese government in March 2008, aims to significantly reduce global greenhouse gas emissions. Among the 21 selected technologies is the Advanced Ultra Super Critical (A-USC) pressure power generation, which targets the commercialization of a 700°C class pulverized coal power system with a power generation efficiency of 46% by around 2015. As of 2004, Japan's pulverized coal power plant capacity reached 35 GW, with the latest plants achieving a steam temperature of 600°C and a net thermal efficiency of approximately 42% (HHV). Older plants from the 1970s and early 1980s, with steam temperatures of 538°C or 566°C, are nearing the need for refurbishment or rebuilding. A case study on retrofitting these older plants with A-USC technology, which uses a 700°C class steam temperature, demonstrated that this technology is suitable for such upgrades and can reduce CO 2 emissions by about 15%. Following this study, a large-scale development of A-USC technology began in August 2008, focusing on developing 700°C class boiler, turbine, and valve technologies, including high-temperature material technology. Candidate materials for boilers and turbine rotor and casing materials are being developed and tested. Two years into the project, useful test results regarding these candidate materials have been obtained, contributing to the advancement of A-USC technology.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 338-352, October 3–5, 2007,
... Abstract Development activities initiated over a decade ago within the COST 522 program and continuing through the COST 536 Action have yielded significant progress in constructing a new generation of steam power plants capable of operating under advanced steam conditions. These innovative...
Abstract
View Papertitled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
View
PDF
for content titled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
Development activities initiated over a decade ago within the COST 522 program and continuing through the COST 536 Action have yielded significant progress in constructing a new generation of steam power plants capable of operating under advanced steam conditions. These innovative plants promise substantially improved thermal efficiency, with steam temperatures reaching up to 620°C (1150°F). Recent successful power plant orders in Europe and the United States stem from critical advancements, including the development, testing, and qualification of 10% Cr steels with enhanced long-term creep properties for high-temperature components such as turbine rotors and valve casings. Extensive in-house development efforts have focused on fabrication, weldability, mechanical integrity, and fracture mechanics evaluations of full-sized forged and cast components. These materials will be implemented in several new coal-fired power plants, notably the Hempstead plant in the USA, which will operate with live steam temperatures of 599°C (1111°F) and reheat steam temperatures of 607°C (1125°F). The improved creep properties enable the construction of casings with reduced wall thicknesses, offering greater thermal flexibility at lower component costs and facilitating welded turbine rotors for high-temperature applications without requiring cooling in the steam inlet region. Looking forward, further efficiency improvements are anticipated through the introduction of nickel alloys in steam turbine and boiler components, with the European AD700 project targeting reheat steam temperatures of 720°C (1328°F) and the US Department of Energy project aiming even higher at 760°C (1400°F). The AD700 project has already demonstrated the technical feasibility of such advanced steam power plants, with engineering tasks progressing toward the construction of a 550 MW demonstration plant, while DOE activities continue to address boiler concerns and focus on rotor welding, mechanical integrity, and steam oxidation resistance.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 939-950, October 11–14, 2016,
... Abstract Despite the significant progress achieved in power generation technologies in the past two decades, finding effective solutions to further reduce emissions of harmful gases from thermal power plant still remains the major challenge for the power generation industry as well as alloy...
Abstract
View Papertitled, Development of Matching Welding Consumables for Boron/Cobalt Alloyed 9%Cr-Mo Steels and the Weld Metal Properties
View
PDF
for content titled, Development of Matching Welding Consumables for Boron/Cobalt Alloyed 9%Cr-Mo Steels and the Weld Metal Properties
Despite the significant progress achieved in power generation technologies in the past two decades, finding effective solutions to further reduce emissions of harmful gases from thermal power plant still remains the major challenge for the power generation industry as well as alloy material developers. In the European material programmes COST 522 and COST 536, based on the existing 9-12%Cr creep resisting steels, an advanced 9%Cr-Mo martensitic alloy, C(F)B2 (GX13CrMoCoVNbNB9-2-1) alloy has been developed. By modification through alloying of boron and cobalt and together with other micro-adjustment of the composition, C(F)B2 alloys has showed very encouraging properties. The current paper summaries the development and evaluation of the matching filler metals for C(F)B2 grade. The design of the filler metal composition is discussed and comparison is made with the parent materials in respect to the alloy additions and microstructure. The mechanical properties of the weld metals at ambient temperature are examined. Creep properties of both undiluted weld metals and cross-weld joints are examined through stress rupture test and the data are evaluated and compared with those of the base alloy and other existing 9%Cr-Mo creep resisting steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, February 25–28, 2025,
... Abstract The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized...
Abstract
View Papertitled, Material Synthesis and Advanced Manufacturing Without Melting: Advantages of Bulk, High-Shear Processing
View
PDF
for content titled, Material Synthesis and Advanced Manufacturing Without Melting: Advantages of Bulk, High-Shear Processing
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1-8, October 22–25, 2013,
... MPa /600 /610 /610 , is now carrying out the preliminary work. The project are planned to achieve the technical target as following: the coal consumption for power generation is 256.7 g/kWh, thermal efficiency is 47.92% (LHV), coal consumption for power supply is 267.1 g/kWh and auxiliary power rate...
Abstract
View Papertitled, Progress of China 700°C USC Development Program
View
PDF
for content titled, Progress of China 700°C USC Development Program
This paper presents an overview of China’s electric power development and the National 700°C Ultra-Supercritical (USC) Coal-Fired Power Generation Technology Innovation Consortium. Besides, the R&D plan and latest progress of China 700°C USC coal-fired power generation technology is also introduced in this paper.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 528-539, February 25–28, 2025,
... Abstract The steam generation systems (SGS) of concentrated solar power (CSP) plants employ multiple heat exchangers arranged in series to convert thermal energy collected from the sun via a heat transfer fluid (HTF) to produce superheated steam in the Rankine cycle. Common CSP plant designs...
Abstract
View Papertitled, Damage of Rankine Cycle Components in Concentrated Solar <span class="search-highlight">Power</span> Plants
View
PDF
for content titled, Damage of Rankine Cycle Components in Concentrated Solar <span class="search-highlight">Power</span> Plants
The steam generation systems (SGS) of concentrated solar power (CSP) plants employ multiple heat exchangers arranged in series to convert thermal energy collected from the sun via a heat transfer fluid (HTF) to produce superheated steam in the Rankine cycle. Common CSP plant designs are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved efficiency, reheaters are also included in the Rankine cycle. In central tower design with directly heated water as the HTF, the receiver can also be considered part of the Rankine cycle. Operating experiences of CSP plants indicate that plant reliability is significantly impacted by failures in various components of the Rankine cycle. Many damage mechanisms have been identified, which include corrosion, thermal fatigue, creep, and stress corrosion cracking, among others. Much of the damage can be attributed to poor water/steam chemistry and inadequate temperature control. While damage in the Rankine cycle components is common, there is generally lack of comprehensive guidelines created specifically for the operation of these CSP components. Therefore, to improve CSP plant reliability and profitability, it is necessary to better understand the various damage mechanisms experienced by linking them to specific operating conditions, followed by developing a “theory and practice” guideline document for the CSP operators, so that failures in the Rankine cycle components can be minimized. In a major research project sponsored by the U.S. Department of Energy (DOE), effort is being undertaken by EPRI to develop such a guideline document exclusively for the CSP industry. This paper provides an overview of the ongoing DOE project along with a few examples of component failures experienced in the Rankine cycle.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, February 25–28, 2025,
... steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal...
Abstract
View Papertitled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam <span class="search-highlight">Generator</span>
View
PDF
for content titled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam <span class="search-highlight">Generator</span>
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
1