1-20 of 212

Search Results for thermal phase stability

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 398-404, October 21–24, 2019,
... on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 220-230, October 3–5, 2007,
... (2 mm/2 × 10 5 hours). Experimental investigations revealed key structural changes at elevated temperatures, including γ coarsening, γ' to η transformation, and G phase formation. To enhance strengthening effects and structural stability, researchers conducted a systematic optimization process based...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
... particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 197-207, October 3–5, 2007,
... and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc, the evolution of these precipitates during the thermal treatment of the COST 522 steel CB8 is simulated from...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 768-777, October 11–14, 2016,
... potential sigma formation, Figure 6. Figure 6: Composite predicted phase stability for the weld between grade 22, a butter layer of filler metal 82, and Alloy 6. Validation of the predictions in Figure 6 was accomplished through thermally aged laboratory welds between grade 22 to Alloy 6 with and without...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 246-252, October 21–24, 2019,
... and temperature, are mandatory. Hence, advanced materials are needed. The present study focuses on stainless, high strength, ferritic (non-martensitic) steel grades, regarding thermal treatment effects on particle evolution. The heat treatment includes variations, e.g. a two phase pre heat treatment. Effects...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... with satisfactory quality confirmed through destructive evaluation. austenitic stainless steel coefficient of thermal expansion creep rupture strength forging high-temperature strength manufacturability nickel-based superalloys phase stability steam turbines Advances in Materials Technology...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1081-1092, October 22–25, 2013,
... Abstract Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 520-530, October 3–5, 2007,
... oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 143-154, October 22–25, 2013,
... candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 434-446, October 3–5, 2007,
... steel, and 100,000-hr creep rupture strength at 700°C should be above the target. (5) The phase stability of alloy LTES700R is confirmed by a heating test from 450°C to 700°C. The new superalloy, LTES700R, with low thermal expansion will be suitable for large components like turbine rotors, especially...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
... and strengthening mechanisms of HR6W were investigated in comparison with strengthened Alloy 617. It has been revealed that the amount of added W is intimately correlated with precipitation amount of Laves phase and thus it is a crucial factor controlling creep strength. Stability of long term creep strength...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
... of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 191-201, October 25–28, 2004,
... resistance Laves phase martensite martensitic steel thermal cycle test USC power plants httpsdoi.org/10.31399/asm.cp.am-epri-2004p0191 Copyright © 2005 ASM International® 191 192 193 200MPa 150MPa 100MPa 120MPa 80MPa 300MPa 150MPa 80MPa 120MPa 100MPa 80MPa 60MPa 200MPa 120MPa 100MPa 60MPa 140MPa 194...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M23C6 carbides and retarding the transition from M23C6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
.... The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 98-119, October 22–25, 2013,
... is contributed by precipitation in Ni-Cr-Co-Mo matrix. So the stability of phase is the key issue for guarantee high creep strength at high temperatures. The structure stability study of WASPALOY has been conducted by long time thermal aging in the temperature range from 550-850 [8]. Fig.18 shows...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1058-1066, October 11–14, 2016,
... Abstract Higher steam temperature in steam power plants increases their thermal efficiency. Thus there is a strong demand for new materials with better creep and corrosion resistance at higher temperatures, while retaining the thermal flexibility of martensitic steels. Z-phase strengthened 12...