Skip Nav Destination
Close Modal
Search Results for
thermal expansion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 115 Search Results for
thermal expansion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 678-689, October 11–14, 2016,
... Abstract Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion...
Abstract
View Paper
PDF
Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher creep rupture strength and better oxidation resistance than conventional high Cr ferritic steels and austenitic steels. The 2 ton ESR ingot was forged or hot rolled without defects, and the blade trial manufacturing was successfully done. This alloy is one of the best candidates for USC and A-USC turbine components.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 623-637, October 25–28, 2004,
... Abstract Advanced 700C class steam turbines require austenitic alloys instead of conventional ferritic heat-resistant steels which have poor creep strength and oxidation resistance above 650C. Austenitic alloys, however, possess a higher thermal expansion coefficient than ferritic 12Cr steels...
Abstract
View Paper
PDF
Advanced 700C class steam turbines require austenitic alloys instead of conventional ferritic heat-resistant steels which have poor creep strength and oxidation resistance above 650C. Austenitic alloys, however, possess a higher thermal expansion coefficient than ferritic 12Cr steels. Therefore, Ni-based superalloys were tailored to reduce their coefficients to the level of 12Cr steels. Regression analysis of commercial superalloys proves that Ti, Mo and Al decrease the coefficient quantitatively in this order, while Cr, used to secure oxidation resistance, increases it so significantly that Cr should be limited to 12wt%. The newly designed Ni-18Mo-12Cr-l.lTi-0.9Al alloy is strengthened by gamma-prime [Ni 3 (Al,Ti)] and also Laves [Ni 2 (Mo,Cr)] phase precipitates. It bears an RT/700C mean thermal expansion coefficient equivalent to that of 12Cr steels and far lower than that of low-alloyed heat resistant steels. Its creep rupture life at 700C and steam oxidation resistance are equivalent to those of a current turbine alloy, Refractaloy 26, and its tensile strength at RT to 700C surpasses that of Refractaloy 26. The new alloy was trial produced using the VIM-ESR melting process and one ton ingots were successfully forged into round bars for bolts without any defects. The bolts were tested in an actual steam turbine for one year. Dye penetrant tests detected no damage. The developed alloy will be suitable for 700C class USC power plants.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 373-385, August 31–September 3, 2010,
... Abstract Hitachi and Hitachi Metals have developed low thermal expansion Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141) for use as A-USC steam turbine material. The approximate 10 5 h creep rupture strength at 740° C is 100MPa, so USC141 can be expected to apply for blades...
Abstract
View Paper
PDF
Hitachi and Hitachi Metals have developed low thermal expansion Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141) for use as A-USC steam turbine material. The approximate 10 5 h creep rupture strength at 740° C is 100MPa, so USC141 can be expected to apply for blades and bolts. Now we have been studying to get better creep properties by microstructure controlling such as grain size or grain boundary morphology. In addition, the segregation test of USC141 shows good Freckle tendencies, it means that it would be easy to make a large ingot which could be used as rotors or pipes. From these calculation results, we have been tried to make an 850mmϕ ESR ingot of USC141.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 400-406, October 11–14, 2016,
.... Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress...
Abstract
View Paper
PDF
Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers. Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress and strain will occur when the temperature changes. Therefore, the dissimilar welded parts require high durability against the repetition of the thermal stresses. SUPER304H (18Cr-9Ni-3Cu-Nb-N) is an austenitic stainless steel that recently has been used for boiler tubes in power plants. In this study, thermal fatigue properties of a dissimilar welded part of SUPER304H were investigated by conducting thermal fatigue tests and finite element analyses. The test sample was a dissimilar welded tube of SUPER304H and T91 (9Cr-1Mo-V-Nb), which is a typical ferritic heat resistant boiler steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 990-997, October 21–24, 2019,
... loads. Higher efficiency demands steels with excellent steam oxidation resistance, favoring ferritic steels for cycling operation due to their limited thermal expansion. This paper presents a study modeling a combined cycle power plant using GE 9HA0.2 GT technology. The analysis compares different...
Abstract
View Paper
PDF
To stay competitive in today’s dynamic energy market, traditional thermal power plants must enhance efficiency, operate flexibly, and reduce greenhouse gas emissions. This creates challenges for material industries to provide solutions for harsh operating conditions and fluctuating loads. Higher efficiency demands steels with excellent steam oxidation resistance, favoring ferritic steels for cycling operation due to their limited thermal expansion. This paper presents a study modeling a combined cycle power plant using GE 9HA0.2 GT technology. The analysis compares different maximum live steam temperatures (585°C, 605°C, 620°C) and four alloys (grades 91 and 92, stainless S304H, and Thor 115) for heat exchangers exposed to steam oxidation. Results indicate that Thor 115, a creep strength enhanced ferritic (CSEF) steel, is a viable alternative to stainless steel for live steam temperatures above 600°C, offering improved oxidation resistance with minimal weight increase. Modern CSEF steels outperform stainless steel in power plants with lower capacity factors, reducing thermal fatigue during load changes. Increasing the live steam temperature boosts plant efficiency, leading to significant CO 2 savings for the same power output.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 135-142, October 21–24, 2019,
... enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming...
Abstract
View Paper
PDF
In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events may occur that boost the severity of corrosion: high feedstock turnover, with increasing “active” sulfur species; skin temperature rise due to the increasing insulation effect of the scale, generating an over-tempering of the material and possible degeneration into creep conditions. Thor115 is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming the superior properties of Thor115 relative to other ferritic grades. For these reasons, Thor 115 is a suitable replacement material for piping components that need an upgrade from grade T/P9 or lower, in order to reduce corrosion rate or frequency of maintenance operations.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, October 15–18, 2024,
... structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91...
Abstract
View Paper
PDF
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 161-168, October 11–14, 2016,
... of 700°C at 35 MPa pressure. Whilst the prime physical property of interest for INCONEL 740H has been creep strength, it exhibits other physical properties worthy of consideration in other applications. It has a thermal expansion co-efficient that lies between typical values for Creep Strength Enhanced...
Abstract
View Paper
PDF
INCONEL 740H has been developed by Special Metals for use in Advanced Ultra Super Critical (A-USC) coal fired boilers. Its creep strength performance is currently amongst the ‘best in class’ of nickel based alloys, to meet the challenge of operating in typical A-USC steam temperatures of 700°C at 35 MPa pressure. Whilst the prime physical property of interest for INCONEL 740H has been creep strength, it exhibits other physical properties worthy of consideration in other applications. It has a thermal expansion co-efficient that lies between typical values for Creep Strength Enhanced Ferritic (CSEF) steels and austenitic stainless steels. This paper describes the validation work in support of the fabrication of a pipe transition joint that uses INCONEL 740H pipe, produced in accordance with ASME Boiler Code Case 2702, as a transition material to join P92 pipe to a 316H stainless steel header. The paper gives details of the material selection process, joint design and the verification process used for the joint.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 327-335, October 21–24, 2019,
... Abstract High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high...
Abstract
View Paper
PDF
High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high mechanical properties such as solid solution strengthening and precipitation hardening. However, the knowledge of the correlation between Laves phase precipitation and oxidation behavior has not clarified yet on 9Cr ferritic steels. This research will be focused on the effect of precipitation of Laves phase on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide mainly consist of wüstite on the Fe-9Cr in the initial stage while on Nb added samples magnetite was dominated. The results show that the Fe-9Cr- 2Nb alloy has a slower oxidation rate than the Fe-9Cr alloy after oxidized for 172.8 ks
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... Abstract Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared...
Abstract
View Paper
PDF
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1407-1416, October 22–25, 2013,
... Abstract Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high...
Abstract
View Paper
PDF
Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared with those as aged. As a result, USC141 as solution treated exhibited almost as same creep rupture properties as that as aged because precipitation at grain boundaries and in grains gradually increased at testing temperatures around 700°C. Furthermore seamless tubes of USC141 were produced and various properties including creep properties are now being evaluated.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 217-230, October 25–28, 2004,
..., and lower thermal expansion coefficients at operating temperatures. However, Grade 91's superior elevated temperature strength requires specific microstructure and metallurgical considerations. This paper highlights concerns that warrant further investigation. Initial operating stresses in Grade 91 piping...
Abstract
View Paper
PDF
The use of creep strength-enhanced ferritic alloys like Grade 91 has become popular in fossil power plants for applications at temperatures above 566°C (1050°F). Compared to Grades 11 and 22, Grade 91 offers higher stress allowables, better ramp rate tolerance, weight reduction, and lower thermal expansion coefficients at operating temperatures. However, Grade 91's superior elevated temperature strength requires specific microstructure and metallurgical considerations. This paper highlights concerns that warrant further investigation. Initial operating stresses in Grade 91 piping systems may exceed 262 MPa (38 ksi), and lack of creep relaxation below 593°C (1050°F) could lead to weldment failures within years, especially above 159 MPa (23 ksi) after one year. While cold spring can reduce initial stresses for systems below 593°C (1050°F), creep relaxation rates up to 206 MPa (30 ksi) need study. Above 593°C (1050°F) and below 103 MPa (15 ksi), weldments may fail prematurely by Type IV creep mechanism. Long-term creep rupture studies on cross-weld and multiaxially loaded thick-walled specimens should evaluate deteriorated weldment properties, particularly below 103 MPa (15 ksi).
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 855-871, October 25–28, 2004,
... life improvements over 309 stainless steel filler metals. Improved joint geometries and additional weld metal reinforcement were determined to extend service life further. A new nickel-based filler metal was also developed, exhibiting thermal expansion properties similar to the low-alloy base metal...
Abstract
View Paper
PDF
In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI found that nickel-based filler metals provided significant service life improvements over 309 stainless steel filler metals. Improved joint geometries and additional weld metal reinforcement were determined to extend service life further. A new nickel-based filler metal was also developed, exhibiting thermal expansion properties similar to the low-alloy base metal and a low chromium content that would result in a smaller carbon-depleted zone than currently available fillers. However, this new filler metal was never commercialized due to a tendency for microfissuring, resulting in less than desired service life. This paper discusses further investigation into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 839-849, August 31–September 3, 2010,
... appear to be more effective because they avoid high thermal expansion intermetallic phases and have less strain energy to nucleate a crack; and (2) the low Al reservoir in a thin coating and the loss of Al due to interdiffusion are not problematic because the low service temperatures of FM steels...
Abstract
View Paper
PDF
Diffusion aluminide coatings have been evaluated as a strategy for improving the oxidation resistance of austenitic and ferritic-martensitic (FM) steels, particularly in the presence of steam or water vapor. The objective was to evaluate the strengths and weaknesses of these coatings and quantify their performance and lifetime. Long-term diffusion and oxidation experiments were conducted to study the behavior of various model diffusion coatings and produce a better data set for lifetime predictions. The key findings are that (1) thin coatings (<50μm) with relatively low Al contents appear to be more effective because they avoid high thermal expansion intermetallic phases and have less strain energy to nucleate a crack; and (2) the low Al reservoir in a thin coating and the loss of Al due to interdiffusion are not problematic because the low service temperatures of FM steels (<600°C) and, for austenitic steels at higher temperatures, the phase boundary between the ferritic coating-austenitic substrate inhibits Al interdiffusion. Unresolved issues center on the effect of the coating on the mechanical properties of the substrate including the reaction of N in the alloy with Al.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 224-234, October 11–14, 2016,
... above 700°C and this alloys are suitable for A-USC power plants[1]. 224 Recently, a precipitation strengthened Ni-base superalloy, USC141TM, was developed for 700oC class A-USC turbine blades and bolts[4]. USC141 has low thermal expansion property which is close to ferritic heat resistant steels...
Abstract
View Paper
PDF
Recently, a γ’ precipitation strengthened Ni-base superalloy, USC141, was developed for 700°C class A-USC boiler tubes as well as turbine blades. In boiler tube application, the creep rupture strength of USC141 was much higher than that of Alloy617, and the 105 hours’ creep rupture strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required for tubes at around 700°C. It is known that coal ash corrosion resistance depends on the contents of Cr and Mo in Ni-base superalloys. Therefore the effect of Cr and Mo contents in USC141 on coal ash corrosion resistance, tensile properties, and creep rupture strengths were investigated. As a result, the modified USC141 containing not less than 23% Cr and not more than 7% Mo showed better hot corrosion resistance than the original USC141. This modified alloy also showed almost the same mechanical properties as the original one. Furthermore the trial production of the modified USC141 tubes is now in progress.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... bending. According to failure analysis on a number of cracked sample of stainless steel elbow, it can be concluded that such a problem belongs to intergranular stress corrosion cracking [3,4], as shown in Fig. 3, induced under the combined effect of bending stress of elbow, thermal expansion stress...
Abstract
View Paper
PDF
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 973-981, October 22–25, 2013,
... that require careful consideration prior to selecting a filler metal include (but are not limited to): carbon diffusion (migration), differences in thermal expansion coefficients, thickness of the sections being welded, notch effects from differences in strengths, and sensitization of base materials. Each...
Abstract
View Paper
PDF
Qualifying welding procedures for repair of components in high temperature service requires careful consideration of factors including identification of the materials involved, existing mechanical properties and service operating parameters such as temperature, pressure and environment. Selection of weld metals to match, under match or overmatch base material as well as direct and indirect consequences on the heat-affected zone also require evaluation. Application of post weld heat treatment and ramifications where dissimilar base materials are involved are discussed plus the necessity of conducting tests at the operating temperatures and conditions where information is not available from the literature. Each of these factors is discussed and examples provided.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, October 15–18, 2024,
... 92 steel, the thermal expansion coefficient at 300 is 11.7×10-6 mm/mm and a 130 temperature change results in 0.15% strain, indicating that most strain change is due to temperature change. Figure 9. Temperature and strain (SG1) changes at the upper front 301 Figure 10 shows temperature and strain...
Abstract
View Paper
PDF
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
... PHYSICAL PROPERTIES Elastic constant Young s and Shear moduli were measured by the ultrasonic method. Poisson s ratio was approximately 0.3 for each temperature. As shown in Figure 10, it is similar to those of P92 [2], shown by broken lines. Thermal expansion Thermal expansion was measured...
Abstract
View Paper
PDF
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
... reported as follows: oxide notches [10, 19, 20], creep voids nucleation around type carbides [10, 21], interfacial stress concentration induced by mismatch of thermal expansion coefficients [10, 22, 23], and the uneven creep strength of the interfacial region [10]. The above shows that creep behaviors...
Abstract
View Paper
PDF
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
1