Skip Nav Destination
Close Modal
Search Results for
test facility
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 97 Search Results for
test facility
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
.... Siefert, editors UNITED STATES ADVANCED ULTRA-SUPERCRITICAL COMPONENT TEST FACILITY WITH 760°C SUPERHEATER AND STEAM TURBINE Robert Romanosky National Energy Technology Laboratory, Pittsburgh, PA, USA Vito Cedro, III National Energy Technology Laboratory, Pittsburgh, PA, USA Robert Purgert Energy...
Abstract
View Paper
PDF
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 9-23, October 22–25, 2013,
... collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops...
Abstract
View Paper
PDF
ENCIO (European Network for Component Integration and Optimization) is a European project aiming at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving environmental and economic sustainability of coal fired power plants and achieving successful deployment of carbon capture and storage technologies. The ENCIO-project is financed by industrial and public funds. The project receives funding from the European Community's Research Fund for Coal and Steel (RFCS) under grant agreement n° RFCPCT-2011-00003. The ENCIO started on 1 July 2011. The overall project duration is six years (72 months), to allow enough operating hours, as well as related data collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops are planned for 20.000 hours of operation at 700°C. The present paper summarizes the current status of the overall process design of the thick-walled components, the test loops and the scheduled operating conditions, the characterizations program for the base materials and the welded joints, like creep and microstructural analysis also after service exposure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1487-1499, October 21–24, 2019,
... that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested...
Abstract
View Paper
PDF
CO 2 emission reduction from coal power plants is still a serious issue to mitigate the impact of global warming and resulting climate change, though renewables are growing today. As one of the solutions, we developed A-USC (Advanced Ultra Super Critical steam condition) technology to raise the thermal efficiency of coal power plants by using high steam temperatures of up to 700℃ between 2008 and 2017 with the support of METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). The temperature is 100℃ higher than that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 450-469, August 31–September 3, 2010,
... on dual-certified 403/410 12% Cr stainless steel, utilizing a newly developed test facility capable of conducting high-cycle fatigue tests in simulated steam environments at 90°C with controlled corrosive conditions. This testing platform enables the investigation of various steady and cyclic stress...
Abstract
View Paper
PDF
A research program has been initiated to develop the first predictive methodology for corrosion fatigue life in steam turbine blades, addressing a critical gap in current understanding despite extensive research into corrosion pitting and fatigue failure. The study focuses initially on dual-certified 403/410 12% Cr stainless steel, utilizing a newly developed test facility capable of conducting high-cycle fatigue tests in simulated steam environments at 90°C with controlled corrosive conditions. This testing platform enables the investigation of various steady and cyclic stress conditions, establishing a foundation for future testing of other blade steels and the development of comprehensive blade life estimation techniques.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 51-67, October 25–28, 2004,
...-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components...
Abstract
View Paper
PDF
Power generation technology selection is driven by factors such as cost, fuel supply security, and environmental impact. Coal remains a popular choice due to its global availability, but efficient, reliable, and cost-effective methods are essential. In Europe, efforts focus on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components, leading to a full demonstration plant. This systematic approach to materials development and proven design principles ensures operational reliability.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 702-713, October 22–25, 2013,
... Abstract An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter...
Abstract
View Paper
PDF
An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter pipes at high temperatures. The creep test was also interrupted three times to measure hardness and voids density in the HAZ region of the outer surface of the test pipe. Results of the measurement of the hardness and voids density at the interruption did not indicate creep damage accumulation. The welded pipe suddenly ruptured with large deformation, which caused crushing damage to the surrounding facility. Type IV cracking occurred in the longitudinal welded portion of the test pipe, and the length of the crack reached 5000mm. SEM observation was carried out at the cross section of the welded portion of the test pipe and voids density was measured along the thickness direction in the HAZ region. To clarify the stress/strain distribution in the welded portion, creep analysis was conducted on the test pipe, where the materials are assumed to consist of base metal, weld metal and HAZ. After stress redistribution due to creep deformation, stress and strain concentrations were observed inside the HAZ region. Then, the authors' creep life prediction model was applied to the creep test result to examine its validity to actual size pipes. It was demonstrated that the life prediction model can evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 268-287, August 31–September 3, 2010,
...-fired utility boilers. Therefore, the objective of this study was to determine the evolution and formation of sulfur and chlorinecontaining gaseous species in a pilot-scale combustion facility. Online gas sampling and measurements were performed in the reducing and oxidizing zones of the test facility...
Abstract
View Paper
PDF
A comprehensive fireside corrosion study was undertaken to better understand the corrosion mechanisms operating on the superheaters and lower furnace walls of advanced coal- fired utility boilers. The study intended to evaluate the fireside conditions generated from burning eight U.S. coals individually in a pilot-scale combustion facility. These coals consisted of a wide range of compositions that are of interest to the utility industry. The combustion facility was capable of producing the realistic conditions of staged combustion existing in coal-fired utility boilers. During each of the combustion tests, gas and deposit samples were collected and analyzed via in-furnace probing at selected locations corresponding to the waterwalls and superheaters. Testing of five of the eight coal groups has been completed to date. Results of these online measurements helped reveal the dynamic nature of the combustion environments produced in coal-fired boilers. Coexistence of reducing and oxidizing species in the gas phase was evident in both combustion zones, indicating that thermodynamic equilibrium of the overall combustion gases was generally unattainable. However, the amount of sulfur released from coal to form sulfur-bearing gaseous species in both the reducing and oxidizing zones was in a linear relationship with the amount of the total sulfur in coal, independent of the original sulfur forms. Such a linear relationship was also observed for the measured HCl gas relative to the coal chlorine content. However, the release of sulfur from coal to the gas phase appeared to be slightly faster and more complete than that of chlorine in the combustion zone, while both sulfur and chlorine were completely released and reacted to form respective gaseous species in the oxidizing zone. The information of sulfur and chlorine release processes in coal combustion generated from this study is considered new to the industry and provides valuable insight to the understanding of fireside corrosion mechanisms.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1204-1214, October 21–24, 2019,
... The boiler component test, using a commercially-operating boiler in Mikawa Power Plant operated by Toshiba subsidiary SIGMA POWER ARIAKE Corporation, was done from 2015 to 2016 in the project [5]. The test facility consisted of super heaters, pipes, valves, and a turbine inner casing. Figure 7 shows...
Abstract
View Paper
PDF
Enhancement of the steam conditions is one of the most effective measures to achieve the goal of higher thermal efficiency. 700°C class A-USC (Advanced Ultra Super Critical Steam Conditions) power plant is one of the remarkable technologies to achieve the goal and reduce CO 2 emissions from fossil fuel power plants. Toshiba has been working on the A-USC development project with subsidy from METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). In this project, A-USC power plants with steam parameters of 35MPa 700/720/720°C were considered. To date, various materials have been developed and tested to verify their characteristics for use in A-USC power plants. And some of these materials are being investigated as to their suitability for use in long term. Together with members of the project, we carried out the boiler component test using a commercially-operating boiler. We manufactured a small-scale turbine casing made of nickel-based alloy, and supplied it for the test. In addition, we manufactured a turbine rotor for turbine rotation tests, and carried out the test at 700°C and rotating speed of 3,600rpm conditions. In this paper, we show the results of the A-USC steam turbine development obtained by the project.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 470-486, August 31–September 3, 2010,
... particle erosion test standard development for application in steam turbines and land based & aero gas turbines engines. The technical approach to accomplish the objective is as follows: 1. Conduct a literature search and survey of high-temperature erosion test facilities and capabilities around the world...
Abstract
View Paper
PDF
An international initiative is underway to develop the first standardized high-temperature solid particle erosion test method for steam turbine applications, addressing limitations of the current room-temperature ASTM G76 standard. Led by EPRI, this program involves laboratories from seven countries in a “Round Robin” testing program, aiming to establish consistent testing procedures for evaluating erosion resistance of materials used in Ultra Supercritical (USC) and advanced USC turbines. The proposed standard will use Type 410 stainless steel tested at 30 and 90-degree impingement angles with 50-micron alumina particles at 200 m/s, both at room temperature and 600°C, providing more relevant conditions for current and next-generation steam turbine applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 53-64, August 31–September 3, 2010,
... of materials for use in A-USC designs have been progressing in both Europe and the United States. The European effort has aimed at demonstrating a power plant with main steam conditions at 365 bar and 700ºC.ix A key step in the European development program was the operation of a component test facility...
Abstract
View Paper
PDF
A recent engineering design study conducted by the Electric Power Research Institute (EPRI) has compared the cost and performance of an advanced ultra-supercritical (A-USC) pulverized coal (PC) power plant with main steam temperature of 700°C to that of conventional coal-fired power plant designs: sub-critical, supercritical, and current USC PC plants with main steam temperatures of 541°, 582°, and 605°C, respectively. The study revealed that for a US location in the absence of any cost being imposed for CO 2 emissions the A-USC design was a slightly more expensive choice for electricity production. However, when the marginal cost of the A-USC design is compared to the reduction in CO 2 emissions, it was shown that the cost of the avoided CO 2 emissions was less than $25 per metric ton of CO 2 . This is significantly lower than any technology currently being considered for CO 2 capture and storage (CCS). Additionally by lowering CO 2 /MWh, the A-USC plant also lowers the cost of CCS once integrated with the power plant. It is therefore concluded that A-USC technology should be considered as one of the primary options for minimizing the cost of reducing CO 2 emissions from future coal power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
... and survey of high-temperature erosion test facilities and capabilities around the world 2. Define the various testing parameters and develop a test matrix for elevated temperature erosion testing 3. Conduct round robin tests and perform statistical analysis of the results 4. Organize an international...
Abstract
View Paper
PDF
Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance, a similar need exists for steam turbines. Existing room-temperature SPE test standards are insufficient for evaluating turbine materials. To address this gap, an EPRI program is developing an elevated-temperature SPE standard. This collaborative effort, involving researchers from multiple countries, has yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
.... A pilot-scale combustion facility was modified to enable burning pulverized coal under air-firing and oxy-firing conditions. Four United States (U.S.) coals were investigated, with the test conditions controlled so that both air-firing and oxy-firing tests of these coals had the same total heat input...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
... plant, it became clear that the final risk barriers would be best addressed by conducting full-scale (800 MW) manufacturing and/or fabrication of components and sub-assemblies from an identified, capable U.S. domestic supplier base, rather than constructing a sub-scale operational testing facility...
Abstract
View Paper
PDF
Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC ComTest) to help achieve technical readiness to allow the construction of a commercial scale A-USC demonstration power plant. Among the goals of the ComTest project are to validate that components made from the advanced alloys can be designed and fabricated to perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for key A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. This project is intended to bring A-USC technology to the commercial scale demonstration level of readiness by completing the manufacturing R&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar (3500 psia).The A-USC ComTest project scope includes fabrication of full scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office under a prime contract with the Energy Industries of Ohio, with co-funding from the power industry participants, General Electric, and the Electric Power Research Institute, has completed the detailed engineering phase of the A-USC ComTest project, and is currently engaged in the procurement and fabrication phase of the work. This paper will outline the motivation for the effort, summarize work completed to date, and detail future plans for the remainder of the A-USC ComTest project.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 24-40, October 22–25, 2013,
... and at actual speed from 2014 to 2016 (Figure 34). The rotors will be heated by electric heaters in a vacuum chamber, and driven by an electric motor. 38 Boiler Component Test Basic Design Components Design Components Prodution & Installation Test 2012 2013 2014 2015 2016 Turbine Rotor Test Test Facility Design...
Abstract
View Paper
PDF
We have reported on the effort being done to develop the A-USC technology in Japan, which features the 700 deg-C steam condition, since the 2007 EPRI conference. Our 9 year project began in 2008. There have been some major changes in the electricity power market in the world recently. At first, the earthquake changed the power system violently in Japan. Almost all nuclear power plants have been shut down and natural gas, oil and coal power plants are working fully to satisfy the market's demands. In the USA, the so called ‘Shale gas revolution’ is going on. In Europe, they are working toward the target of reducing CO 2 emissions by the significant use of renewables with the backup of the fossil fuel power systems and enhancing power grids. A very rapid increase in power generation by coal is being observed in some countries. Despite some major changes in the electric sector in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have been done during the first half of the project term. Long term material tests such as creep rupture of base materials and welds will be conducted for 100,000hrs continuing after the end of the project with the joint effort of each participating company. Today, we are preparing the plan for the second half of the project, which is made up of boiler components test and the turbine rotating tests. Some boiler superheater panels, large diameter pipes and valves will be tested in a commercially operating boiler from 2015 to 2017. The turbine rotor materials which have the same diameter as commercial rotors will be tested at 700 deg-C and at actual speed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, xix-xx, October 22–25, 2013,
... and property studies, operation of test loops and component test facilities, and planning for a demonstration plant. China appears poised to build and operate the world s first coal-fired 700°C+ A-USC steam cycle around the year 2020. Materials, specifically nickel-based alloys and advanced steels...
Abstract
View Paper
PDF
Preface for the 2013 Advances in Materials Technology for Fossil Power Plants conference.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, xvii-xviii, October 11–14, 2016,
... experience with highlights from major national programs around the globe which are in a different stage of development from materials fabrication and property studies, operation of test loops and component test facilities, and planning for a demonstration plant. Materials, specifically nickel-base alloys...
Abstract
View Paper
PDF
Preface for the 2016 Advances in Materials Technology for Fossil Power Plants conference.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1138-1148, October 11–14, 2016,
... Abstract Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing...
Abstract
View Paper
PDF
Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing tests at a variety of temperatures and environments. In this study, the results of a unique technique involving salt spray testing at high temperatures are presented. The Haynes 282 gamma – prime (γ’) strengthened alloy fabricated by means of three different manufacturing processes: HAYNES 282 WROUGHT alloy, Haynes 282-SINT alloy, and finally Haynes 282-CAST alloy have been tested. The materials have been exposed to a salt spray corrosion atmosphere using 1% NaCl - 1% Na 2 SO 4 . Post exposure investigations have included SEM, EDS and XRD examinations. The test using salt spray of 1% NaCl - 1% Na 2 SO 4 water solution at 550 °C for 500 hours indicted no influence on the corrosion products formation, where Cr 2 O 3 has been developed in all three alloys, whereas NiO has been found only in Haynes 282-CAST material. On the other hand, it has been found that the fabrication process of HAYNES 282 alloy strongly influences the corrosion products formation under the high temperature exposures.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 850-871, August 31–September 3, 2010,
...), titanium nitride (TiN) and multilayered nano coatings were selected. TurboMet International (TurboMet) teamed with Southwest Research Institute (SwRI) with state-of-the-art nano-technology coating facilities with plasma enhanced magnetron sputtering (PEMS) method to apply these coatings on various...
Abstract
View Paper
PDF
Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components and lead to premature failures, business loss and rapier costs to power plant owners and operators. Under a program funded by the Electric Power Research Institute (EPRI), nanocoatings are under development for application in steam and gas turbines to mitigate the adverse effects of PE and LPE on rotating blades and stationary vanes. Based on a thorough study of the available information, most promising coatings such as nano-structured titanium silicon carbo-nitride (TiSiCN), titanium nitride (TiN) and multilayered nano coatings were selected. TurboMet International (TurboMet) teamed with Southwest Research Institute (SwRI) with state-of-the-art nano-technology coating facilities with plasma enhanced magnetron sputtering (PEMS) method to apply these coatings on various substrates. Ti-6V-4Al, 12Cr, 17-4PH, and Custom 450 stainless steel substrates were selected based on the current alloys used in gas turbine compressors and steam turbine blades and vanes. Coatings with up to 30 micron thickness have been deposited on small test coupons. These are extremely hard coatings with good adhesion strength and optimum toughness. Tests conducted on coated coupons by solid particle erosion (SPE) and liquid droplet erosion (LDE) testing indicate that these coatings have excellent erosion resistance. The erosion resistance under both SPE and LDE test conditions showed the nano-structured coatings have high erosion resistance compared to other commercially produced erosion resistance coatings. Tension and high-cycle fatigue test results revealed that the hard nano-coatings do not have any adverse effects on these properties but may provide positive contribution.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 723-734, October 11–14, 2016,
... to achieve an acceptable particle velocity distribution in the stream. There is not one accepted design for HTSPE test apparatus, with many test facilities being constructed to meet particular needs, such as wear in pipes [5], in boilers by fly ash [6] and in flow channels by sand [7] to name just a few...
Abstract
View Paper
PDF
Work has been progressing over recent years to develop a standard test method for high temperature solid particle erosion testing. Early in 2015 this standard was published by ASTM as G211-14 Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. To support the development of this standard the European funded METROSION project has been conducting a comparison of different apparatus which employ different nozzle geometries, acceleration lengths, stand-off distances and heating and accelerating processes. The aim is to understand the influence these instrumental and experimental parameters have on the measured erosion rate and erosion mechanism. As part of this work three very distinct approaches have been compared using a common erodent and test pieces. Measurements have been performed at 600 °C with particle velocities of 50 to 320 m/s, using different stand-off distances, acceleration lengths and nozzle diameters for impact angles of 30 and 90°. This is the first time a comprehensive comparison of these parameters has been conducted and shows the relative influence of these experimental variables.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
... project to build a 760°C (1400°F) component test facility is now underway. This facility will be unique in that it will test heavy section components 60°C (100°F) hotter than any other test facility in the world, will incorporate cyclic operation of welds and valves, and will include a turbine test...
Abstract
View Paper
PDF
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
1